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The degree of persistence in daily PMys and Os in the ten most populated US cities, namely New York, Los
Angeles, Chicago, Houston, Phoenix, Philadelphia, San Antonio, San Diego, Dallas and San Jose is examined in
this work. We employ a methodology based on fractional integration, using the order of integration as a measure
of the degree of persistence. Using data for the time period from January 1, 2019 to December 31, 2020, our
results indicate that fractional integration and long memory features are both present in all the examined cases,
with the integration order of the series being constrained in the (0, 1) interval. Based on this, the estimation of the

coefficients for the time trend produces results which are substantially different from those obtained under the I

(0) assumption.

1. Introduction

Poor air quality can affect human health. We find suspended particles
(PM35) and Ozone (O3) to be among the most harmful pollutants for
health. The U.S. Environmental Protection Agency is increasingly con-
cerned and is monitoring the increase of particulate matter or PMy 5 due
to the confirmation of the risks they pose to health (EPA, 2002; Bell et al.,
2007; Nowak et al., 2013; Feng et al., 2016; etc.). They can penetrate into
the lungs, causing inflammation and a worsening of symptoms in patients
with heart and lung disease. Moreover, they can carry carcinogenic
compounds that could be adsorbed on the surface of the lungs. Likewise,
Ozone, Os, irritates the airways of the lungs, increasing the symptoms of
asthma and lung diseases. According to the U.S. Environmental Protec-
tion Agency, American Lung Association and other studies, Ozone is one
of the most dangerous and least controlled pollutants in the U.S (Levy
et al., 2005; Bell et al., 2015; Ito et al., 2005; Villeneuve et al., 2007; Mar
and Koenig, 2009; EPA, 2013; etc.). The concern about the impact of both
pollutants is confirmed by other recent studies in which they are
analyzed together (Wang et al., 2019; Arter and Arunachalam, 2019). In
this sense, the importance of investigating the dynamics of air pollution is
clear in order to develop adequate models for prediction purposes and as
a consequence to be able to design policies to manage air quality.
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Based on the above, the present work investigates the properties of
the time series corresponding to daily data of PMy s and O3 on the ten
most populated cities in the US, investigating its evolution across time.
However, instead of using traditional methods which are based on a
“good” I(0) behavior of the error term, we consider the possibility of long
range dependence (or logn memory), which is a feature very often
observed in environmental and climatological data.

The rest of the paper is organized as follows: Section 2 presents a short
description of the atmospheric pollution and Section 3 features a litera-
ture review on the topic. The model and the methodology used in the
paper are given in Section 4. Data and the empirical results are displayed
in Section 5. Section 6 concludes the paper.

2. Atmospheric pollution

Suspended particles are a pollutant made up of liquid and solid ma-
terial of very diverse composition and size, which are found in the air.
Particles are a mixture of many kinds of pollutants, the product of a large
number of natural and anthropogenic processes. The risk they constitute
to health may be associated with their multiple physical and chemical
characteristics, such as their number, size, shape, chemical composition
and concentration. The origin of this pollutant includes combustion

1 There are other pollutants which are not photochemical and that are direclty linked to primary precursors such as Carbon Monoxide or NOy. The choice of PM 5

and O3 for this paper is based on data availability for the 10 cities examined.
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processes in vehicles, mainly those that use diesel, foundry industries,
paints, ceramics and power plants. Erosion, dust pits, and forest fires are
also a natural source of airborne particles (Mujica-Alvarez and
Figueroa-Lar, 1996).

In recent years, greater attention has been paid to particles with a size
smaller than one pm in diameter, which are known as the ultrafine
fraction and to which a greater potential for damage seems to be
attributed (EPA  2002; Lippmann, 1989; Rojas-Bracho and
Garibay-Bravo, 2003).

Suspended particles have been associated with effects on the health of
the population for more than fifty years, with the historical episodes of
pollution that occurred in the Meuse Valley in Belgium, London and
Donora in Pennsylvania, among others. These impacts have been
corroborated with recent studies in more than 150 cities, with very
diverse levels of pollution, even some below the air quality standards in
force in different parts of the world. It is also known that there are
population groups that can be especially sensitive to the adverse effects of
particles, such as children, the elderly and people with chronic lung
diseases and heart disease. The weight of scientific evidence from toxi-
cological and epidemiological studies carried out in recent years suggests
that the fine fraction, from high-temperature combustion processes, may
be the most relevant in terms of adverse effects on health and possibly
also ultrafine (which may contain sulfates, nitrates, strong acids, etc.),
since by penetrating to the lower respiratory tract and reaching the
alveoli, they can trigger inflammatory reactions.

It should be mentioned that there is also evidence on the possible
effect on health of particles of geological origin and/or the coarse frac-
tion, which could be of a similar magnitude to that reported for the fine
fraction (Ostro et al., 1999; Castillejos et al., 2000). Recent studies car-
ried out in cities in Europe, the United States and the rest of America
report the possible health effects of suspended particles, such as increases
in mortality rates and cytotoxic and genotoxic effects. At the same time,
the World Health Organization (WHO) in its publication of the "Guide
Values" for health protection, indicates the preference for the use of PM; 5
as an indicator value of air quality in large cities compared to values
based on the atmospheric concentrations of PM1o. The main argument in
favor of the use of this new indicator is based on the fact that the current
values of PM;( can be greatly influenced because in some areas there is
less precipitation and ventilation than in other parts, conditioning thus
the results obtained.

Another major air pollutant is ozone (O3). It is a gas molecule made
up of three atoms of oxygen. Ozone pollution forms in the atmosphere
when gases from exhaust pipes, smokestacks, gas, oil extraction and other
sources react in the presence of sunlight. The gases that transform and
form ozone are volatile organic compounds, carbon monoxide and ni-
trogen oxides.

Ozone levels generally rise between May and October when tem-
peratures are higher, sunlight is greater, and static atmospheric condi-
tions transform air pollutants into ozone. It acts as a powerful irritant of
the respiratory system. Independent scientists and the United States
Environmental Protection Agency (EPA) concluded that pollution caused
by ozone represents a serious threat to health.

Accordingly, recent studies that have analyzed the effect of the
pandemic associated with SARS-CoV-2 and the confinement adopted
worldwide, on the reduction of activity in cities, have revealed positive
consequences on emissions of pollutant gases and particles, atmospheric
pollution, air quality and, as a consequence, an improvement in the urban
health indices and in the awareness of the population in this regard (Cole
et al., 2020; Brimblecombe and Lai, 2020). These papers show that the
confinement of the population influenced human behavior, in terms of
movements of people and goods or the use of telephones and the internet,
but they also show that it cannot be said that this change in behavior has
had the same positive effect on the decrease in emissions for all pollut-
ants. The fundamental decrease has occurred in those related to emis-
sions associated with traffic and the use of fossil fuels. However, the
effects on PM; particles were short-term and not statistically significant,
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as they were for SO, closely related, in this case, to the low temperatures
in the area and the dependence on coal-fired power plants. From these
studies it is deduced that the specific study of the evolution of the
different pollutants with negative effects on health and their possible
control is relevant.

3. Literature review

Numerous institutions from different countries and innumerous
works have analyzed the connection between pollution and harmful ef-
fects on health (Schwartz and Marcus, 1990; Anderson et al., 1996;
Atkinson et al., 1999; Gardner and Dorling, 1999; etc.). In this sense, the
importance of investigating the dynamics of air pollution in order to
develop adequate models for prediction purposes and design policies to
manage air quality is clear. Therefore, it is extremely important to sys-
tematically monitor fine particles and to define as soon as possible an air
quality standard for their concentration in the environment in order to
protect the health of the population (Anderson et al., 1996; Cohen et al.,
1997; Romieu and Borja-Aburto, 1997; Atkinson et al., 1999; Gardner
and Dorling, 1999; Lacasana-Navarro et al., 1999; Borja-Aburto, 2000;
Arribas-Monzon et al., 2001; Dharshana et al., 2010; Arista et al., 2012;
Ikeda and Tanimoto, 2015; Shaharaiyni and Sodoudi, 2016; Khuluse,
2017; Nhung et al., 2018; Nguyen et al., 2020; Kaneyasu et al., 2020;
etc.).

The present work contributes to another line of the research literature
that focuses instead on the modelling of various pollutants such as ozone
(03) and particulate matter (PMz5). Notable studies in this regard
include, for example Zamri et al. (2009), which used the ARIMA
approach developed in Box and Jenkins (1976) to model various pol-
lutants in Malaysia, finding a significant upward trend in the data. Li
etal. (2017) analysed the quality of air in Beijing for the time period from
2014 to 2016 using various models such as the time-delay neural
network (TDNN) model, the spatio-temporal deep learning (STDL)
model, the ARMA model, the support vector regression (SVR) model and
the extended long-term memory neural network (LSTME) model. After
careful consideration of the different models, they came to the conclusion
that the LSTME model was the most appropriate one for air pollutant
series characterized by long memory with optimal time lags.

Naveen and Anu (2017) examined the quality of the air in India using
ARIMA, seasonal ARIMA (SARIMA) and other models. Pan and Chen
(2008) is one of the few studies using ARFIMA models for air pollution
data (in Taiwan). They conclude by explaining that these are more ac-
curate than the classical ARIMA models.

Morel et al. (1999) derive an expression for the statistical distribution
of the air pollutant concentrations in Santiago de Chile based on the
inverse gamma distribution. According to them, it corresponds to the
stationary distribution of a stochastic process, relating emission level to
air pollutant concentrations. Nevertheless, Steinfeld and Pandis (1998)
conclude that there is no a priori reason for the atmospheric distribution
to adhere to a specific probability distribution.

We adopt in this paper a long-memory methodology that uses
fractional integration. Long memory (or long range dependence) is a
feature of the data that is characterized by a high level of dependence
between values which are far apart in time. This property has been
found to be present in many series in different disciplines such as
finance and economics (Gil-Alana and Moreno, 2012; Abritti et al.,
2017; Kalemkerian and Sosa, 2020; Murialdo et al., 2020; Qiu et al.,
2020); climatology and meteorology (Gil-Alana, 2005; 2008; 2017;
Vyushin and Kushner, 2009; Efstathiou and Varotsos, 2010, 2012;
Franzke, 2012; Ludescher et al., 2016; Varotsos et al., 2016; Bunde,
2017; Yuan et al., 2019; Varotsos and Mazei, 2019; Bruneau et al.,
2020; etc.), but also in environmental sciences (Barros et al., 2016;
Tiwari et al., 2016; Gil-Alana and Solarin, 2018; Gil-Alana and Trani,
2019; Xayasouk et al., 2020). Recent studies using fractional integra-
tion in atmospheric pollution include among others the papers by
Gil-Alana et al. (2020) and Caporale et al. (2021).
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4. Persistence and fractional integration

Persistence is a common feature observed in time series data and
there are many ways of modelling this behavior. A standard approach is
to consider an AR (1) process and using its coefficient as a measure of
persistence. In a more general context, the sum of the AR coefficients in a
general AR(p) model is another approach. Nevertheless, both measures
assume that the error term displays a short memory (also termed I (0))
behavior, a feature that is not always observed in environmental data. In
fact, as mentioned in the above section, many series in environmental
studies display a long memory pattern, which is characterized because
the spectral density function explodes at the zero frequency. There are
many models to explain such a feature, but one which is very popular
among econometricians is that based on fractional integration or I(d)
models where the parameter d indicates the order of differentiation and
can be a fractional positive value.

We say that a time series follows an I(d) model if after taking its d-

differences, the series becomes I (0) or short memory; that is, x; is said to
be I(d) if it can be expressed as:
(1-L)Y%%=u, t=12 ., 1)
where L is the lag-operator and u is integrated of order 0 or I (0). Then, if
the differencing parameter d is positive, x; displays the property of long
memory in the sense that the observations are highly dependent in time
even if they are far distant, and the higher the value of d is, the higher the
level of association between the observations is.

On the other hand, we are interested in the evolution of the series
across time and a classical approach here is to consider a linear time trend
model of the form:

Ye=a+pt+x., t=12 ., 2
where y; represents the observed data, and a and f are the unknown
coefficients referring respectively to an intercept and a (linear) time
trend. Table 1 displays the estimates of these coefficients for the two
contaminants, PM; 5 and O3, under the assumption that u¢in (1) is I (0) in
the ten most populated US cities. We observe that for Os, (in the lower

Table 1. Time trend coefficients imposing of I (0) errors.

Cities Intercept (t-value) Time trend (t-value)
PMy 5
New York 30.9524 (32.26) -0.0061 (-2.73)

Los Angeles 37.8394 (30.37) 0.0291 (10.03)

Chicago 37.3968 (37.90) -0.0087 (-3.81)
Houston 34.1410 (34.96) 0.0056 (2.47)
Phoenix 22.4217 (26.06) 0.0163 (8.13)
Philadelphia 33.9824 (71.91) =

San Antonio 36.4289 (32.43) -0.0051 (-1.96)

San Diego 32.4697 (27.26) 0.0393 (10.92)
Dallas 31.5704 (67.37) —

San Jose 22.5715 (15.77) 0.0263 (7.90)
O3

New York 25.2283 (38.45) -0.0099 (-6.45)
Los Angeles 17.8609 (33.58) -.0.0033 (-2.68)
Chicago 24.5890 (41.64) -0.0039 (-2.84)
Houston 20.2559 (37.50) -0.0035 (-2.76)
Phoenix 22.1075 (38.43) -0.0041 (-3.04)
Philadelphia 26.1255 (47.23) -0.0074 (-5.73)
San Antonio 22.1853 (40.31) -0.0013 (-2.03)
San Diego 25.5370 (36.51) -0.0134 (-6.46)
Dallas 23.5210 (45.73) -0.0036 (-3.05)
San Jose 21.8166 (50.26) -0.0058 (-5.72)
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part of the table) all the slope coefficients are significantly negative,
while for PMy 5 (upper part) the results are mixed: we obtain negative
coefficients for three cities (New York, Chicago and San Antonio);
insignificant coefficients in other two (Philadelphia and Dallas), and
positive slopes for the remaining five cities.

According to these results, it seems that the O3 emissions have been
reducing across time, and the same has been happening with PM; 5 in at
least three cities. The results displayed in Table 1, however, might be
biased if the disturbances, x; in (2) is not an I (0) process. Thus, what we
do in the following section is to estimate a more general model,
combining both Egs. (1) and (2) in a single framework, That is,
Ye=a+pt+x,(1-L)'x =u, t=12 .., 3)
where u; is now I (0) and will be specified in terms of both uncorrelated
(white noise) and autocorrelated errors. The estimation here is based on
the Whittle function (an approximation to the likelihood function)
expressed in the frequency domain (Dahlhaus, 1989) and uses a simple
version of a testing procedure described in Robinson (1994) that will be
very appropriate in our series since it does not discriminate between
stationary (d < 0.5) and nonstationary (d > 0.5) data.

Alternative methods in the analysis of long range dependence (long
memory) in various pollutants (including ozono and Particular Matters)
have been examined for example in Varotsos, Ondov and Efstathiou
(2005) and Varotsos and Kirk-Davidoff (2006), in both cases using
Detrended Fluctuation Analysis (DFA). We differ from those papers in our
modelization which is based on a parametric model using fractional
integration.

HEMENDIK AURRERA

5. Data and empirical results

The series correspond to the air quality (daily average) obtained from
the World Air Quality Index (WAQI) at https://aqicn.org/map/world/
es/. All data have been converted using the US EPA standard (United
States Environmental Protection Agency). We focus on data at a daily
frequency for the past 2 years (2019-2020) at https://aqicn.org/dat
a-platform/covid19/corresponding to the 10 most populous cities in
the United States: New York, Los Angeles, Chicago, Houston, Phoenix,
Philadelphia, San Antonio, San Diego, Dallas and San Jose. The series are
based on the measurement of PM,s microparticles and ozone (Os)
measured in micrograms per cubic meter of air (ig/m3). The WAQI data
come from the following sources: New York - New York State Department
of Environmental Conservation (NYSDEC): www.dec.ny.gov/; Chicago -
Illinois Environmental Protection Agency: www.epa.illinois.gov/; Phila-
delphia - Bureau of Air Quality, Pennsylvania's Department of Environ-
mental Protection: www.dep.pa.gov/; Los Angeles - California Air
Resources Board: www.arb.ca.gov/; Houston - Texas Commission on
Environmental Quality (TCEQ): www.tceq.texas.gov/; Phoenix - Arizona
Department of Environmental Quality - Air Quality Division: www
.azdeq.gov/; San Antonio - Texas Commission on Environmental Qual-
ity (TCEQ): www.tceq.texas.gov/; Dallas - Texas Commission on Envi-
ronmental Quality (TCEQ): www.tceq.texas.gov/; San Diego - California
Air Resources Board: www.arb.ca.gov/; San Jose - California Air Re-
sources Board: www.arb.ca.gov/.

Figures 1 and 2 display respectively the time series plots of PM5 5 and
O3 in the ten most populated US cities. We observe a similar pattern in all
cases, with some outliers in some of the series.”

Table 2 presents the estimated values of d (and their 95% confidence
band) in a model given by Eq. (3) for the PMy 5 (upper part) and O3
(lower part), under the assumption that the error term in equation (3),
i.e., uy, is a white noise process. Thus, all the time dependence in the data

2 Removing these outliers did not modify the main conclusions reported in
this work.
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is described through the differentiation parameter d. In Table 3, how-
ever, we allow for autocorrelated disturbances by means of using the
approach developed in Bloomfield (1973) that approximates ARMA
structures with very few parameters. In both cases, we consider three

Figure 1. Time series plots: PM, s.

potential set-ups for the deterministic terms. Thus, we report in the
second column of the tables the case where o = p = 0 in (3), that is,
assuming that there are no deterministic terms; the third column refers to
the case of a model with a constant (i.e., imposing § = 0 in (3)), while the
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Figure 2. Time series plots: Os.
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Table 2. Estimates of differencing parameter (d): White noise disturbances.

No regressors A constant A linear time trend

PMzs

New York 0.49 (0.43, 0.57) 0.43 (0.36, 0.52) 0.43 (0.36, 0.52)
Los Angeles 0.69 (0.61, 0.79) 0.67 (0.59, 0.77) 0.67 (0.59, 0.77)
Chicago 0.55 (0.48, 0.65) 0.49 (0.40, 0.60) 0.49 (0.40, 0.60)
Houston 0.46 (0.40, 0.55) 0.44 (0.36, 0.53) 0.44 (0.36, 0.53)
Phoenix 0.59 (0.52, 0.66) 0.55 (0.48, 0.63) 0.55 (0.48, 0.63)
Philadelphia 0.51 (0.45, 0.59) 0.45 (0.37, 0.54) 0.45 (0.37, 0.54)
San Antonio 0.47 (0.41, 0.55) 0.45 (0.38, 0.53) 0.45 (0.37, 0.53)
San Diego 0.62 (0.53, 0.72) 0.59 (0.50, 0.70) 0.59 (0.50, 0.70)
Dallas 0.50 (0.43, 0.57) 0.47 (0.40, 0.55) 0.47 (0.40, 0.55)
San Jose 0.74 (0.65, 0.85) 0.73 (0.64, 0.84) 0.73 (0.64, 0.84)
O3

New York 0.43 (0.39, 0.48) 0.39 (0.35, 0.44) 0.39 (0.35, 0.44)
Los Angeles 0.41 (0.37, 0.47) 0.38 (0.34, 0.44) 0.38 (0.34, 0.44)
Chicago 0.48 (0.44, 0.53) 0.43 (0.38, 0.48) 0.43 (0.38, 0.48)
Houston 0.54 (0.48, 0.62) 0.50 (0.43, 0.59) 0.50 (0.43, 0.59)
Phoenix 0.55 (0.51, 0.61) 0.53 (0.49, 0.59) 0.54 (0.49, 0.59)
Philadelphia 0.49 (0.45, 0.54) 0.44 (0.39, 0.49) 0.44 (0.39, 0.49)
San Antonio 0.56 (0.50, 0.64) 0.53 (0.46, 0.61) 0.53 (0.46, 0.61)
San Diego 0.47 (0.42, 0.53) 0.43 (0.38, 0.49) 0.43 (0.38, 0.49)
Dallas 0.51 (0.46, 0.58) 0.46 (0.40, 0.53) 0.46 (0.40, 0.53)
San Jose 0.48 (0.44, 0.54) 0.40 (0.35, 0.47) 0.40 (0.35, 0.47)

In parenthesis, the 95% confidence bands of the non-rejection values of d. In
bold, the selected model for each series.

Table 3. Estimates of the differencing parameter (d): Autocorrelated
disturbances.

No regressors A constant A linear time trend
PMy 5
New York 0.30 (0.23, 0.37) 0.19 (0.14, 0.26) 0.19 (0.13, 0.26)
Los Angeles 0.35 (0.26, 0.44) 0.32 (0.26, 0.41) 0.30 (0.23, 0.39)
Chicago 0.24 (0.15, 0.34) 0.10 (0.03, 0.19) 0.06 (-0.01, 0.17)
Houston 0.20 (0.08, 0.31) 0.16 (0.10, 0.25) 0.16 (0.09, 0.25)
Phoenix 0.41 (0.34, 0.49) 0.35 (0.30, 0.43) 0.35 (0.29, 0.41)
Philadelphia 0.30 (0.22, 0.40) 0.16 (0.09, 0.25) 0.15 (0.09, 0.25)
San Antonio 0.28 (0.20, 0.38) 0.23 (0.15, 0.29) 0.23 (0.15, 0.29)
San Diego 0.30 (0.18, 0.45) 0.31 (0.23, 0.40) 0.23 (0.12, 0.38)
Dallas 0.30 (0.20, 0.40) 0.24 (0.16, 0.33) 0.24 (0.16, 0.33)
San Jose 0.28 (0.22, 0.37) 0.30 (0.23, 0.38) 0.28 (0.20, 0.37)
O3
New York 0.45 (0.41, 0.51) 0.40 (0.35, 0.45) 0.39 (0.35, 0.45)

Los Angeles

0.37 (0.31, 0.43)

0.32 (0.27, 0.38)

0.32 (0.27, 0.38)

Chicago 0.45 (0.39, 0.51) 0.37 (0.33, 0.44) 0.37 (0.33, 0.44)
Houston 0.35 (0.27, 0.42) 0.25 (0.19, 0.33) 0.24 (0.19, 0.32)
Phoenix 0.50 (0.45, 0.56) 0.47 (0.42, 0.54) 0.47 (0.42, 0.54)
Philadelphia 0.47 (0.43, 0.53) 0.39 (0.34, 0.45) 0.39 (0.34, 0.45)

San Antonio

0.43 (0.35, 0.51)

0.32 (0.23, 0.41)

0.31 (0.23, 0.42)

San Diego 0.42 (0.36, 0.49) 0.36 (0.30, 0.42) 0.35 (0.29, 0.42)
Dallas 0.42 (0.36, 0.50) 0.31 (0.24, 0.38) 0.31 (0.24, 0.38)
San Jose 0.41 (0.35, 0.47) 0.27 (0.23, 0.34) 0.27 (0.22, 0.33)

In parenthesis, the 95% confidence bands of the non-rejection values of d. In
bold, the selected model for each series.
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is not required in any single case, a constant being sufficient in all series
to describe the deterministic part. Focusing on the estimated orders of
integration, we observe that in all cases, the values of d are constrained
between 0 and 1, supporting the hypothesis of fractional integration.
Thus, for the PM; 5 data, the values of d range between 0.43 (New York)
and 0.73 (San Jose). For the Os, the lowest d corresponds to Los Angeles
(0.38) and the highest to Phoenix and San Jose (with an estimated d-
value equal to 0.53). These results, however, do not take into account any
structure on the error term. Thus, in Table 3, we permit autocorrelation
for u; in (3).

We notice in Table 3 is that the time trend coefficient is found to be
significant at the 5% level in a number of cases, in particular, for Los
Angeles, Chicago, San Diego and San Jose with the PM5 5 data, and also
for San Jose with the O3 data. In Table 4 we report the estimated co-
efficients for each series based on the results from Table 3. We see that
the trend is positive for Los Angeles, San Diego and San Jose in the case of
the PM, 5, but negative for Chicago with PMj; 5 and for San Jose with Os.
Focusing on d, the values are generally lower for PM; 5, ranging from
0.06 (in Chicago), 0.16 (Philadelphia and Houston) and 0.19 (New York)
to 0.28 in San Jose and 0.30 in Los Angeles.® For Os, the lowest d cor-
responds to Houston (0.25) and the highest one to Phoenix (0.47), and
the estimates of d are significantly positive in all cases.

As a conclusion, we first observe that long memory or long range
dependence is present in all series, with positive orders of integration in
all cases examined. Thus, the hypothesis of I (0) or short memory
behavior is decisively rejected in all cases. An interesting exercise is to
compare the time trend coefficients under the (statistically rejected)
assumption of I (0) errors (in Table 1) with those based on long memory
and autocorrelated errors (in Table 4). Starting with the results for PMj s,
we observe that under I (0) errors, significant negative coefficients are
found in San Antonio, New York and Chicago; insignificant coefficients
for Philadelphia and Dallas, and positive ones for Houston, Phoenix, San

Table 4. Estimated coefficients from the results in Table 3.

No regressors A constant A linear time trend
PMy5
New York 0.19 (0.14, 0.26) 29.4995 (23.47) —
Los Angeles 0.30 (0.23, 0.39) 40.2009 (11.37) 0.0259 (3.20)
Chicago 0.06 (-0.01, 0.17) 37.3689 (33.94) -0.0085 (-3.39)
Houston 0.16 (0.10, 0.25) 35.7809 (32.87) —
Phoenix 0.35 (0.30, 0.43) 31.90286 (13.11) —
Philadelphia 0.16 (0.09, 0.25) 34.2519 (34.70) —
San Antonio 0.23 (0.15, 0.29) 33.9031 (19.17) —
San Diego 0.23 (0.12, 0.38) 34.5906 (12.80) 0.0344 (4.38)
Dallas 0.24 (0.16, 0.33) 30.9069 (18.97) —
San Jose 0.28 (0.20, 0.37) 24.8705 (7.22) 0.0225 (19.17)
O3
New York 0.40 (0.35, 0.45) 20.0441 (8.54) —
Los Angeles 0.32 (0.27, 0.38) 15.1218 (10.70) —
Chicago 0.37 (0.33, 0.44) 20.9926 (11.51) —
Houston 0.25 (0.19, 0.33) 18.7393 (21.27) —
Phoenix 0.47 (0.42, 0.54) 16.6715 (7.48) —
Philadelphia 0.39 (0.34, 0.45) 21.3001 (11.23) —

San Antonio

0.32 (0.23, 0.41)

20.8923 (15,73)

San Diego 0.36 (0.30, 0.42) 20.2442 (10.67) —
Dallas 0.31 (0.24, 0.38) 21.0930 (16.74) =
San Jose 0.27 (0.22, 0.33) 21.2655 (16.47) -0.0054 (-1.85)

last column refers to the model with a constant and a linear time trend
(i.e., @ and f are estimated from the data along with d).

We start describing the results for the case based on white noise er-
rors, and the first noticeable issue is that the coefficient for the time trend

3 For the case of Chicago, the null hypothesis of short memory (i.e., 1(0))
cannot rejected at the 5% significance level.
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Jose, Los Angeles and San Diego. Looking now at the results based on I(d)
models, in Table 4, we observe that there is only one negative significant
coefficient (Chicago); insignificant coefficients are found in six cities
(New York, Houston, Phoenix, Philadelphia, San Antonio and Dallas) and
three cities with positive time trends (San Jose, Los Angeles and San
Diego).

The results for O3 are even more interesting. Under the (wrong) I (0)
assumption, significant negative time trend coefficients are observed in
all cases. However, estimating d rather than imposing it to be 0 produced
insignificant coefficients in all except one city (San Jose). Thus, the
conclusion that O3 emissions display a significant negative trend is
seriously questioned when a long memory component is allowed in the
data.

The fact that in all cases the estimates of the differencing parameter
are in the interval (0, 1) implies that exogenous shocks in the series will
have transitory effects, and will disappear by themselves in the long run
though with long lasting effects, being longer the higher the value of d is.
Thus, in the event of a positive shock, reducing the number of emissions,
strong policy actions should be required to maintain the series at the new
(lower) levels. On the contrary, if the shock is negative, though slowly,
the series will recover by itself in the long run.

The persistence and long memory property in time series is usually
associated with the aggregation of heterogeneous individual processes
(see, e.g., Robinson, 1978; Granger, 1980; Parke, 1999; Souza and Smith,
2002; Souza, 2005, 2007; Hassler, 2011; Shi and Sun, 2016; etc.).
However, in the case of air pollution there are additional factors such as
sociological persistence (related to the COVID-19 lockdown, see, e.g.,
Cole et al., 2020 and Brimblecombe and Lai, 2020) and this may have an
influence on the high degree of dependence observed in the data.

6. Conclusions

In this paper we have examined the degree of persistence in the daily
levels of PM3 5 and Os in the ten most populated cities in the US. For this
purpose, we have employed a model that allows for time trends and
where the detrended series may display a long memory pattern. Our
results using fractional integration decisively reject the hypothesis of I (0)
or short memory behavior, and testing simultaneously the existence of
time trends and long memory produces results which substantially differ
from those based on a model that imposes a degree of integration equal to
0. Thus, for example, for the case of Os, the results based on the classical I
(0) assumption indicate the existence of negative time trends, which may
indicate a continuous reduction in the O3 emissions across time; how-
ever, allowing for a fractional degree of integration, the I (0) hypothesis
is rejected, and estimating the time trends under the I(d) specification,
the coefficients are found to be statistically insignificant in nine out of the
ten cities examined. Nevertheless, erroneous inference of long range
dependence may also be the case due to various reasons such as incom-
plete data analysis, abrupt events or scaling behavior. In addition, the
presence of non-linear structures or structural breaks may also produce
spurious evidence of long memory. Thus, further results based on this
methodology should be conducted to corroborate the present results in
these and in other cities all over the world.
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