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Measuring Persistence of the World Population: 
A Fractional Integration Approach 

 
 

Abstract 
 
This paper uses fractional integration methods to measure the degree of persistence in historical 
annual data on the world population over the period 1800-2016. The analysis is carried out for the 
original series, and also for its log transformation and its growth rate. The results indicate that the 
series considered are highly persistent; in particular, the estimated values of the fractional 
diffencing parameter are above 1, which implies that shocks have permanent effects. Endogenous 
break tests detect one main break shortly after WWII. The evidence based on the corresponding 
sub-sample estimation indicates a sharp fall in the degree of dependence between the observations 
in the second sub-sample. Although the original data and their log transformation still exhibit 
explosive behaviour in that sub-sample, the growth rates are mean-reverting, and thus shocks to 
these series will only have transitory effects; moreover, there is a negative time trend. This has 
implications for the design of policies aimed at containing population growth. 
JEL-Codes: C220, C400, J110. 
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1. Introduction 

The world population has increased sharply over the history of the planet. 12,000 years 

ago, it was only 4 million, which would now be the size of a city. Currently, it is 1860 

times larger than at that time (see https://ourworldindata.org/world-population-growth). 

Its most significant growth has occurred in modern times: its size was still under 1 billion 

at the beginning of the 19th century (Kremer, 1993); it then increased sevenfold, the 

current population representing 6.5% of the total number of individuals born during the 

entire history of mankind, which was estimated to have been 108 billion (Haub, 1995). 

Growth was particularly rapid between 1950 and 1987, when the world population 

increased from 2.5 to 5 billion, the highest growth rate (2.1%) being recorded in 1962;  

since then, growth has decelerated, though it remains fast (Roser et al., 2013). 

It should be noted that growth is driven by the difference between births and 

deaths. Most recently, the increase in deaths has not been matched by a similar one in 

births, which implies that the world population growth may halt in the near future. The 

'demographic transition' model (Kirk, 1996) explains how growth occurs by identifying 

five different stages, namely: (i) Stage 1: mortality and birth rates are both high; (ii) Stage 

2: mortality falls but birth rates are still high; (iii) Stage 3: mortality is low and birth rates 

fall; (iv) Stage 4: mortality and birth rates are both low; (v) Stage 5: mortality is low and 

there is some evidence of rising fertility (when the fertility rate is lower than two, the 

population decreases in the long run - Roser et al., 2013).  

The present study provides evidence on the degree of persistence of the world 

population. This is measured using a fractional integration framework, where the 

fractional differencing parameter is the estimated persistence. This approach is more 

general than standard ones based on the I(0) stationary versus I(1) nonstationary 

dichotomy since it allows the order of integration to take any real values, including 

fractional ones. As a result, it encompasses a much wider range of stochastic processes 
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and sheds light on whether or not the series is mean-reverting (and thus whether the 

effects of shocks are transitory or permanent) and the speed of the dynamic adjustment 

towards the long-run equilibrium. This method is applied below to analyse the stochastic 

properties of a world population series starting in 1800, thus obtaining an interesting set 

of results with important policy implications.  

The layout of the following: Section 2 briefly reviews the literature on world 

population trends; Section 3 describes the data and the empirical results: Section 4 offers 

some concluding remarks. 

 

2.  Literature Review  

There exist a number of studies aiming to explain the observed trends in the world 

population. For instance, Caswell (1978) analysed how small changes in the probabilities 

of birth, growth, survival, and migration affect population growth (Caswell, 1978). 

Specifically, he showed how, in a system of equations in linear differences, the biggest 

eigenvalue corresponds to the speed of population growth. A similar approach was used 

by Hamilton (1966), Emlen (1970) and Goodman (1971) for modelling the world 

population by age groups. By contrast, Tuljapurkar and Orzack (1980) considered instead 

a Markov process with a Leslie matrix for each time interval, and concluded that the world 

population is log-normal, which is consistent with models of geometric growth including 

non-negative growth. A logistic model was instead estimated by Marchetti et al. (1996) 

to capture the behaviour of both life expectancy and fertility; however, they could not 

reach definite conclusions regarding the future path of the world population.  

Stochastic demography models have provided new insights into the likely effects 

of increased environmental variability on population trends (Boyce et al., 2006). Lutz and 

Quiang (2002) focused instead on the factors that can affect population trends by causing 
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a decrease in procreation in the long run.  Birdsall (1988) investigated the relationship 

between economic development and population growth and showed the importance of 

migration and urbanisation as drivers of demographic change. Gil-Alana et al. (2022) 

examined the same issue applying fractional integration and cointegration methods to 

historical data for Australia, Chile, Denmark, France, the UK, Italy, and the US from 1820 

onwards. They found that the GDP and population series are highly persistent, but the 

evidence on the existence of a long-run equilibrium relationship linking these  two 

variables is mixed, cointegration only holding in the cases of France, Italy and the UK. 

Finally, Climent and Meneu (2004) provided evidence of a linkage between the total 

fertility rate and GDP by estimatig vector error correction models and carrying out 

Granger causality tests.  

With the exception of Gil-Alana et al. (2022), none of the above mentioned papers 

examines the degree of persistence of population data using a fractional integration 

approach. The present study applies the same method to historical data on the world 

population rather than on the population in individual countries as Gil-Alana et al. (2022) 

do and thus provides novel evidence. 

 

3.  Data and Empirical Analysis 

The annual world population series used for the analysis spans the period from 1800 to 

2016 and has been obtained from the 'OurWorldinData, which is a project of the Global 

Change Data Lab, a non-profit organisation based in the UK (Registered Charity Number 

1186433), and is available from the following website: https://ourworldindata.org/world-

population-growth#how-has-world-population-growth-changed-over-time.  

FIGURE 1 ABOUT HERE 
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 Figure 1 displays the evolution over time of the first differenced series. It can be 

seen that it increased gradually from 1800 till the beginning of the 20th century. It then 

experienced a sharp decline during both the First and the Second World Wars, after which 

it rose sharply, peaking in the 1980s, before subsiding as a result of a fall in fertility. 

We analyse the behaviour of the world population by estimating a model with 

deterministic terms as standard in the unit root literature (Bhargava, 1986), namely: 

,...,2,1t,txt10ty =++= ββ  (1) 

where yt stands for the series of interest, and β0 and β1 are the intercept and the (linear) 

time trend coefficient;1 however, unlike in the standard unit root model, in our fractional 

integration framework the error term xt is assumed to be integrated of order d, where d 

can take any real value, including fractional ones, i.e., 

                     ,...,2,1t,ux)B1( tt
d ==−         (2) 

Using a Binomial expansion, one can re-write equation (2), where B is the lag operator, 

for instance, Bkxt = xt-k, and ut is I(0) (see Granger and Joyeux, 1980; Granger, 1980; 

1981; Hosking, 1985), as follows: 

            (1 − 𝐵𝐵)𝑑𝑑 =  ∑ �𝑑𝑑𝑗𝑗�
∞
𝑗𝑗=0 (−1)𝑗𝑗𝐵𝐵𝑗𝑗 = 1 − 𝑑𝑑𝐵𝐵 + 𝑑𝑑(𝑑𝑑−1)

2
𝐵𝐵2 − ⋯,   (3) 

where the higher the value of d is, the higher is the degree of association between 

observations distant in time. Note that if d = 0 the process exhibits short memory, whilst 

d>0 implies long memory; if d < 0.5, it is covariance stationary and mean reverting; if 0.5 

≤ d < 1 it is nonstationary but mean reversion still occurs; if d ≥ 1, the process is explosive.  

 We then implement the Lagrange Multiplier (LM) test using a version of the 

Whittle procedure in the frequency domain as in Robinson (1994) for the following null 

hypothesis: 

                                                           
1 A quadratic term was found to be statistically insignificant. 
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                      ,dd:H oo =     (4) 

(for the empirical properties of this test, see Gil-Alana and Robinson, 1997; Gil-Alana 

and Moreno, 2012; Abbritti et al., 2016; etc.). 

Three model specifications are considered, namely without deterministic terms, 

with an intercept only, and with an intercept as well as a linear time trend. Table 1 displays 

the estimates of d alongside their 95% confidence intervals, for both the original and the 

log-transformed data, under the assumption of white noise residuals, whilst Table 2 

presents the results when allowing for autocorrelation in the error term ut,; in both cases 

the coefficients in bold are those from the specification selected on the basis of the 

statistical significance of the regressors. Note that for the case of autocorrelated residuals 

we use the exponential spectral model of Bloomfield (1973), which is well suited to the 

framework proposed by Robinson (1994) and applied in this study. This specification 

approximates AR structures in a non-parametric way, and results in rapidly decaying 

autocorrelation coefficients (see, e.g., Gil-Alana, 2004).  

TABLES 1 - 3 ABOUT HERE 

 Concerning the results with white noise residuals (Table 1), it can be seen that the 

time trend is not statistically significant, and the estimated value of d is greater than 1 for 

both the original data (1.46) and their log transformation (1.78). As for case of 

(Bloomfield) autocorrelation in the error term, the results are quite similar, though the 

estimates of are slightly lower (1.41 for the original data, and 1.71 for the logged ones). 

We also conducted the analysis for the growth rate, calculated as the first difference of 

the logged values (Table 3). The parameter d is now estimated to be equal to 0.78 with 

white noise errors and 0.65 with autocorrelated ones, with the unit root null hypothesis 

being rejected in the former case in favour of mean reversion (d < 1), but not in the latter 

one.   
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TABLES 4 AND 5 ABOUT HERE 

Given the long time span, it is possible that breaks have occurred. Therefore we 

carry out the Bai and Perron’s (2003) break tests. These results are reported in Table 4. 

Three breaks are detected in the case of the original data (1915, 1948 and 1981) and five 

in the case of the logged ones (1832, 1880, 1915, 1948 and 1981). The same number of 

breaks (and break dates) is found in both cases for the growth rates, which are calculated 

as the first differences of the logged series. However, splitting the sample accordingly 

would yield very short subsamples with unreliable estimates. Therefore, we carry out the 

tests again allowing for a single break only. This appears to have occurred in 1948 in the 

case of the original data, and in 1946 for the logged series and the growth rate (Table 5).  

 TABLES 6 -  8 ABOUT HERE 

Tables 6, 7 and 8 report the estimated values of d corresponding to the two 

subsamples based on the detected breaks for each of the three series (original data, log-

transformed ones, growth rates), again for the three specifications without deterministic 

terms, with an intercept only, and an intercept as well as a linear time trend. It is 

noteworthy that in the case of the original series (Table 6) there is a substantial reduction 

in the degree of integration after the break, the estimated value of d decreasing from above 

2 (or even 3) before the break to 1 or around 1 after it. Similar evidence is obtained when 

using the logged values (Table 7), namely the degree of integration falls sharply after the 

break; in addition, there is now a significant positive trend in the second subsample. 

Finally, in the case of the growth rates (Table 8) there is a decrease in the degree of 

integration from the first to the second subsample (from 2.66 to 0.52 with white noise 

errors and from 1.05 to 0.58 with autocorrelated ones), but the time trend is now negative 

and significant in the second subsample regardless of the specification for the error term. 

 

Electronic copy available at: https://ssrn.com/abstract=4368215



8 
 

4.  Conclusions 

This paper uses fractional integration methods to measure the degree of persistence in 

historical annual data on the world population over the period 1800-2016. The analysis is 

carried out for the original series, and also for its log transformation and its growth rate. 

The results indicate that the series considered are highly persistent; in particular, the 

estimated values of the fractional diffencing parameter are above 1, which implies that 

shocks have permanent effects.  

It should be noted that these findings could be biased in the presence of structural 

breaks which have been overlooked. Therefore we also carry out endogenous break tests 

which suggest that the main break in the data occurred shortly after the Second World 

War. The evidence based on the corresponding sub-sample estimation indicates a sharp 

fall in the degree of dependence between the observations in the second sub-sample. 

However, in the case of the original data and their log transformation they are still above 

1, which implies explosive behaviour and permanent effects of exogenous shocks; in 

addition, there is a statistically significant positive time trend. By contrast, the growth rate 

of the world population, though not covariance stationary, is mean-reverting, and thus 

shocks to this series will only have transitory effects; moreover, there is a negative time 

trend. This represents important information for policy makers concerned with 

demographic trends, since it suggests that there are already some factors at work (such as 

a fall in fertility) slowing down growth in the world population; this should be taken into 

account when designing policies aimed at containing population growth owing to the 

limited resources of the planet. 

  

Electronic copy available at: https://ssrn.com/abstract=4368215



9 
 

References 

Abbritti, M., Gil-Alana, L. A., Lovcha, Y., and Moreno, A. (2016). Term structure 
persistence. Journal of Financial Econometrics, 14(2), 331-352. 
 
Bai, J., and Perron, P. (2003). Computation and analysis of multiple structural change 
models. Journal of applied econometrics, 18(1), 1-22. 
 
Bhargava, A. (1986). On the theory of testing for unit roots in observed time series. The 
Review of Economic Studies, 53(3), 369-384. 
 
Birdsall, N. (1988). Economic approaches to population growth. Handbook of 
development economics, 1, 477-542. 
 
Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time 
series. Biometrika, 60(2), 217-226. 
 
Boyce, M. S., Haridas, C. V., Lee, C. T., and NCEAS Stochastic Demography Working 
Group. (2006). Demography in an increasingly variable world. Trends in Ecology & 
Evolution, 21(3), 141-148. 
 
Caswell, H. (1978). A general formula for the sensitivity of population growth rate to 
changes in life history parameters. Theoretical population biology, 14(2), 215-230. 
 
Climent, F. J., and Meneu, R. (2004). Demography and economic growth in Spain: a time 
series analysis. Available at SSRN 482222. 
 
Emlen, J. M. (1970). Age specificity and ecological theory. Ecology, 51(4), 588-601. 
 
Gil-Alana, L. A. (2004). The use of the Bloomfield model as an approximation to ARMA 
processes in the context of fractional integration. Mathematical and Computer 
Modelling, 39(4-5), 429-436. 
 
Gil-Alana, L., Font, C., & Gil-López, Á. (2022). GDP and population growth: Evidence 
of fractional cointegration with historical data from 1820 onwards. Journal of Economic 
Studies, 49(2), 379-393. 
 
Gil-Alana, L. A., and Moreno, A. (2012). Uncovering the US term premium: an 
alternative route. Journal of Banking & Finance, 36(4), 1181-1193. 
 
Gil-Alana, L. A., and Robinson, P. M. (1997). Testing of unit root and other nonstationary 
hypotheses in macroeconomic time series. Journal of Econometrics, 80(2), 241-268. 
 
Goodman, L. A. (1971). On the sensitivity of the intrinsic growth rate to changes in the 
age-specific birth and death rates. Theoretical Population Biology, 2(3), 339-354. 
 
Granger, C. W. (1980). Long memory relationships and the aggregation of dynamic 
models. Journal of econometrics, 14(2), 227-238. 
 

Electronic copy available at: https://ssrn.com/abstract=4368215



10 
 

Granger, C.W.J. (1981) Some properties of Time Series data and their use in Econometric 
Model Specification, Journal of Econometrics 16, 121-131. 
 
Granger, C. W., and Joyeux, R. (1980). An introduction to long‐memory time series 
models and fractional differencing. Journal of time series analysis, 1(1), 15-29. 
 
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of 
theoretical biology, 12(1), 12-45. 
 
Haub, C. (1995). How many people have ever lived on earth?. Population today, 23(2), 
4-5. 
 
Hosking, J. R. M. (1985). Fractional differencing modeling in hydrology 1. JAWRA 
Journal of the American Water Resources Association, 21(4), 677-682. 
 
https://ourworldindata.org/world-population-growth 
 
 
Kirk, D. (1996). Demographic transition theory. Population studies, 50(3), 361-387. 
 
Kremer, M. (1993). Population growth and technological change: One million BC to 
1990. The quarterly journal of economics, 108(3), 681-716. 
 
Lutz, W., and Qiang, R. (2002). Determinants of human population 
growth. Philosophical Transactions of the Royal Society of London. Series B: Biological 
Sciences, 357(1425), 1197-1210. 
 
Marchetti, C., Meyer, P. S., and Ausubel, J. H. (1996). Human population dynamics 
revisited with the logistic model: how much can be modeled and 
predicted?. Technological forecasting and social change, 52(1), 1-30. 
 
Robinson, P. M. (1994). Efficient tests of nonstationary hypotheses. Journal of the 
american statistical association, 89(428), 1420-1437. 
 
Roser, M., Ritchie, H., Ortiz-Ospina, E., and Rodés-Guirao, L. (2013). World population 
growth. Our world in data. 
 
Tuljapurkar, S. D.,  and Orzack, S. H. (1980). Population dynamics in variable 
environments I. Long-run growth rates and extinction. Theoretical Population 
Biology, 18(3), 314-342. 
 
United Nations, Department of Economic and Social Affairs, Population Division (2017). 
World Population Prospects: The 2017 Revision, DVD Edition. Available at: 
https://esa.un.org/unpd/wpp/Download/Standard/Population/ 
 
 
 
 
 
 

Electronic copy available at: https://ssrn.com/abstract=4368215

https://ourworldindata.org/world-population-growth
https://esa.un.org/unpd/wpp/Download/Standard/Population/


11 
 

 
 
 
Figure 1: Time series plot 
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Table 1: Estimates of the differencing parameter, d - White noise errors 

Series No terms With a constant With a constant and a 
linear time trend 

Original 1.44   (1.34,  1.57) 1.46   (1.36,  1.59) 1.46   (1.36,  1.59) 

Log-transformed 0.98   (0.90,  1.10) 1.78   (1.66,  1.92) 1.78   (1.66,  1.92) 
The values in bold are those from the model selected on the basis of the statistical significance of the 
regressors. The values in parenthesis are the confidence bands at the 95% level. 

 

Table 2: Estimates of the differencing parameter, d - Autocorrelated errors 

Series No terms With a constant With a constant and a 
linear time trend 

Original 1.38   (1.18,  1.72) 1.41   (1.19,  1.75) 1.41   (1.20,  1.75) 

Log-transformed 0.95   (0.81,  1.15) 1.71   (1.30,  2.20) 1.71   (1.30,  2.20) 
The values in bold are those from the model selected on the basis of the statistical significance of the 
regressors. The values in parenthesis are the confidence bands at the 95% level. 

 

 

Table 3: Estimates of the differencing parameter, d, for the growth rate series  

Series No terms With a constant With a constant and a 
linear time trend 

White noise 0.78   (0.66,  0.92) 0.78   (0.66,  0.92) 0.78   (0.66,  0.92) 

Autocorrelation 0.65   (0.30,  1.20) 0.65   (0.30,  1.20) 0.65   (0.30,  1.20) 
The values in bold are those from the model selected on the basis of the statistical significance of the 
regressors. The values in parenthesis are the confidence bands at the 95% level. 

 

 

Table 4: Bai and Perron (2003) break test results  

Series N. of breaks Break dates 

Original 3 1915;  1948;  1981 
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Table 5: Bai and Perron (2003) break test results – one break only 

Series N. of breaks Break dates 

Original 1 1948 

Log-transformed 1 1946 
Growth rate 1 1946 

 

 

Table 6a:Sub-sample estimates of the differencing parameter, d - Original data  

i) White noise errors 

Series No terms With a constant 
With a constant 
and a linear time 
 T d 1800 - 1948 2.06   (1.95,  2.17) 3.36   (3.21,  3.59) 3.37   (3.21,  3.59) 

1949 - 2016  1.18   (0.98,  1.49) 1.14   (0.98,  1.38) 1.13   (1.00,  1.35) 
ii) Autocorrelated errors 

Series No terms With a constant 
With a constant 
and a linear time 
 T d 1800 - 1948 2.57   (1.85,  2.89) 2.89   (2.62,  3.14) 2.88   (2.62,  3.14) 

1949 - 2016  0.65   (0.26,  1.02) 1.20   (1.00,  1.45) 1.16   (0.99,  1.41) 
The values in bold are those from the model selected on the basis of the statistical significance of the 
regressors. The values in parenthesis are the confidence bands at the 95% level. 

 

 

Table 6b: Sub-sample estimates of the coefficients from the selected models in 
Table 5a - Original data  

i) White noise errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 3.36   (3.21,  3.59) 3925.60   (14.43) ----- 
1949 - 2016  1.14   (0.98,  1.38) 9737.60.  (5.89) ---- 

ii) Autocorrelated errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 2.89   (2.62,  3.14) 3925.62   (11.74) ----- 
1949 - 2016  1.20   (1.00,  1.45) 9758.65. (5.38) ----- 

The values in bold are those from the model selected on the basis of the statistical significance of the 
regressors. The values in parenthesis are the confidence bands at the 95% level.  
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Table 7a: Sub-sample estimates of the differencing parameter, d - Logged data  

i) White noise errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 0.99   (0.89,  1.14) 3.52   (3.07,  4.09) 3.66   (3.15,  4.15) 
1949 - 2016  0.98   (0.83,  1.19) 1.46   (1.24,  1.76) 1.39 (1.20,  1.65) 

ii) Autocorrelated errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 0.93   (0.75,  1.21) 2.16   (1.09,  2.67) 2.08   (1.07,  2.63) 
1949 - 2016  0.91   (0.62,  1.26) 1.09   (0.32,  1.59) 1.08   (0.78,  1.63) 

The values appearing in bold indicate the significant model according to the deterministic components. 
The values in parenthesis are the confidence bands at the 95% level. 

 

Table 7b: Sub-sample estimates of the coefficients from the selected models in 
Table 6a - Logged data  

i) White noise errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 3.52   (3.07,  4.09) 8.265    (184.63) 0.019   (2.27) 
1949 - 2016  1.46 (1.24,  1.76) 9.456    (209.80) 0.055  (2.26) 

ii) Autocorrelated errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 2.08   (1.07,  2.63) 8.266   (138.84) 0.018   (2.05) 
1949 - 2016  1.08   (0.78,  1.63) 9.998   (197.59) 0.020   (2.49) 

The values in bold are those from the model selected on the basis of the statistical significance of the 
regressors. The values in parenthesis are the confidence bands at the 95% level.  
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Table 8a: Estimates of the differencing parameter, d - Growth rates  

i) White noise errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 2.29   (2.02,  2.81) 2.66   (2.15,  3.14) 2.66   (2.15,  3.15) 
1949 - 2016  0.48   (0.29,  0.75) 0.41   (0.25,  0.68) 0.52 (0.32,  0.73) 

ii) Autocorrelated errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 1.40   (0.07,  1.82) 1.05   (0.06,  1.63) 1.05   (0.05,  1.64) 
1949 - 2016  0.18   (-0.11, 0.70) 0.15   (-0.09, 1.00) 0.58   (-0.06, 1.02) 

The values in bold are those from the model selected on the basis of the statistical significance of the 
regressors. The values in parenthesis are the confidence bands at the 95% level. 

 

 

Table 8b: Estimated coefficients in the selected models in Table 7a - Growth rates  

i) White noise errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 2.66   (2.15,  3.14) 0.0187   (5.16) ----- 
1949 - 2016  0.52   (0.32,  0.73) 0.1613   (4.36) -0.0025   (-2.45) 

ii) Autocorrelated errors 

Series No terms With a constant With a constant and a 
linear time trend 

1800 - 1948 1.05   (0.05,  1.64) 0.0173   (2.67) 0.0015   (2.21) 
1949 - 2016  0.58   (-0.06, 1.02) 0.1761   (4.45) -0.0027   (-2.16) 

The values in bold are those from the model selected on the basis of the statistical significance of the 
regressors. The values in parenthesis are the confidence bands at the 95% level. 
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