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Abstract
We examine the historical time series data of ammonia emissions from 1770 to 2019 in 37 OECD
countries by looking at its statistical properties in order to determine if the series display time trends and
persistence. These two properties are very common in environmental data, and our results indicate that
reversion to the mean only occurs in the case of Finland, while the null hypothesis of a unit root cannot
be rejected in the case of Norway or Iceland. In all the other cases, the estimated value of the differencing
parameter is much higher than 1, and this is consistent for the two assumptions made regarding the error
term. Thus, shocks are expected to be permanent in all cases except Finland.

1. Introduction
NH3 (ammonia) is the most abundant alkaline gas in the atmosphere, it is a highly reactive and soluble
alkaline gas, which originates from both natural and anthropogenic sources. Ammonia comes from the
decomposition and volatilization of urea. High-density, intensive agricultural practices are considered "hot
spots of emission." Ammonia emissions related to agriculture, such as the burning of biomass or the
manufacture of fertilizers, are also relevant. Other sources of NH3 emissions come from catalytic
converters in gasoline fuelled cars, land�lls, sewers, composting of organic materials, combustion,
industry, birds and wild animals and volatilization from soils and oceans (Sutton et al., 2000; Bicer et al.,
2017).

Recent studies indicate that NH3 emissions have increased worldwide in recent decades. Ammonia has
impacts both locally and internationally. In the atmosphere, ammonia reacts with acidic pollutants such
as the products of NOx and SO2 emissions to produce a �ne aerosol containing ammonia (NH4+). In this
sense, although the useful life of NH3 is relatively short (< 10–100 km), NH4 + can be transferred over
longer distances (100-> 1000 km) (Fowler et al., 1998; Asman et al., 1998; etc.). This is a serious problem,
since NH3 plays a very important role in the formation of atmospheric particles, the degradation of
visibility and the atmospheric deposition of nitrogen in sensitive ecosystems. Excess nitrogen may cause
eutrophication and acidi�cation effects in semi-natural ecosystems, which in turn may lead to species
composition changes and other deleterious effects (Van den Berg et al., 2008; Wiedermann et al., 2009;
Bobbink et al., 2010; etc.). In short, the increase in NH3 emissions has a high negative impact on public
and environmental health and, without a doubt, on climate change (Behera et al., 2013; Lourenço &
Nunes, 2020).

One of the features of ammonia emissions which has not been examined in the existing literature is its
persistence. Persistence of ammonia emissions suggests that shocks to ammonia emissions in these
countries will have permanent effects. The magnitude of the persistence of ammonia emissions will
determine the size of the remedial measures required by the authorities to confront the harmful impact
associated with any sudden increase in ammonia emissions. Furthermore, persistent ammonia
emissions suggests that an abrupt increase in ammonia emissions (probably due to industrial
discharges, changes in manure application, agricultural and urban runoff, drainage from �sh and shrimp
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farms) will continue into the future unless drastic actions are taken by policy makers to restrain such an
increase. Persistence of ammonia emissions suggests that it is di�cult to correctly project future values
of ammonia emissions by only relying on its past trend. Additionally, if two or more ammonia emissions
series are stationary, the prospect of convergence between the series is very lean and accordingly it might
be incorrect to make a convergence inference on such series (Nieswiadomy & Strazicich, 2004).

We examine historical time series data referring to the ammonia emissions in 37 OECD countries starting
in 1770 and ending in 2019 in this paper. Ammonia emissions grew in OECD members in most of the
years covered in this study. For example, ammonia emissions expanded in OECD countries from 847
kilotons in 1770 to 2,710 kilotons, 11,320 kilotons, and 11,601 kilotons in 1900, 1990 and 2019,
respectively (Feng et al., 2020). We focus on issues such as the existence of deterministic terms and
persistence which are both features widely observed in environmental studies (Gil-Alana et al., 2017;
Zhang et al., 2020; Solarin et al., 2021). Our results indicate that time trends are statistically signi�cantly
positive in six countries (Turkey, Australia, Canada, New Zeeland, Norway and Iceland) independently of
the speci�cation of the error term, but also in Mexico, Spain, Italy, Chile, Austria and Slovenia if the errors
in the differenced process are uncorrelated. On the other hand, mean reversion, and thus, transitory
shocks, are only observed in the case of Iceland. The unit root hypothesis cannot be rejected for Norway
and Iceland, and for the remaining countries the degree of differentiation seems to be signi�cantly higher
than 1.

The rest of the paper is structured as follows: Section 2 presents a short review on the literature on
modelling environmental data; Section 3 describes the dataset and the methodology used based on the
concept of fractional integration. Section 4 is devoted to the empirical results, while Section 5 concludes
the paper.

2. Literature Review
With the increase in population, the need to generate enough food to meet this growth has also raised.
Fritz Haber achieved, at the beginning of the 20th century, the synthesis of NH3. The process consisted,
basically, of converting inert gaseous N2 into biologically active forms that were used to fertilize �elds
and increase food production, which made it possible to meet the demand of considerable population
increases, as reported in the works by Erisman et al. (2007) and Reis et al. (2009) and others. But this
bene�cial effect resulted in the addition of an excess of anthropogenic nitrogen (N) compounds to the
atmosphere. This substantial increase has become a major problem and concern for human health and
the environment, as stated by Krupa and Moncrief (2002) and Behera et al. (2013) among many others.
The most important N gases that are emitted by human activities are nitrogen oxides (NOx), nitrous oxide
(N2O) and NH3. From these gases, NH3, is emitted, as explained by Olivier et al. (1998) and Zhang et al.
(2008), by a large number of sources, such as the volatilization of animal waste and synthetic fertilizers,
loss of soil under native vegetation and agricultural crops, human excrement and combustion of fossil
fuels.
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The existence of NH3 in the gaseous phase and its interaction with other substances in the atmosphere
was discovered in the last century. Being the only kind of primary alkaline basic gas in the atmosphere,
NH3 plays, as Shukla and Sharma (2010), Xue et al. (2011) and Behera et al. (2013) argue, an important
role in determining the general acidity of precipitation, airborne particles (aerosols and PM) and cloud
water. Ammonia and ammonium (NHx) are also nutrients that fertilize plants, as re�ected in the work of
Sutton et al. (2000) and Alonso et al. (2017). However, a considerable increase in the anthropogenic
contribution of N to the environment can lead to the eutrophication of terrestrial and aquatic ecosystems,
which poses a serious threat to biodiversity (see, e.g., Asman et al., 1998; Galloway et al., 2003; Erisman
et al., 2005; Van den Berg et al., 2008; Wiedermann et al., 2009; Bobbink et al., 2010; Wang et al., 2022).

More recently, studies such as Charlson et al. (1990), Bauer et al. (2007), Myhre et al. (2009) and
Lourenço & Nunes (2020) have examined the impact of the sources, the movement and destination of
atmospheric NH3 on climate change that has been taking place worldwide. NH3 emissions have
increased worldwide in recent decades, due to atmospheric ammonia having impacts both locally and
internationally as shown in the studies by Asman et al. (1998) and Fowler et al. (1998). Speci�cally, the
effects of sulphate (SO4

2−) and nitrate (NO3−) aerosols on the dispersion of incoming solar radiation
have been veri�ed. The greater the availability of aerosol particles, the greater the cloud droplet
formation. As a consequence, the total accumulated area of all the droplets is larger, the resulting cloud is
more re�ective and remains longer (cloud life effect).

In summary, ammonia is a nitrogen-containing compound and its emissions contribute to the formation
of ammonium sulphate and ammonium nitrate aerosols, which deteriorate air quality. The increase in
ammonia emissions have made it, along with sulphur dioxide, nitrogen oxides and tropospheric ozone,
one of the most worrying pollutants.

3. Data And Methodology
The ammonia emissions (in kilotons) datasets have been obtained from Feng et al. (2020). The
collection and processing of the necessary data in a consistent format are done in the �rst stage of the
data preparation. Thereafter, emission factor information gathered in the �rst stage are utilised to
compute default emissions data. The datasets are for 1770–2019.

Dealing with the methodology, we use techniques based on fractional integration, which are very useful
for the purpose of describing issues such as persistence, and time trends in time series data. A process
{xt, t = 0, ± 1, …} is said to be fractionally integrated or integrated of order d, and represented as I(d), if it
can be expressed as:

      (1)
where B is the backshift operator (i.e., Bkxt = xt−k) and where ut is integrated of order 0 or I(0) that means
that it is second order stationary with a spectral density function that is positive and bounded at all
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frequencies. Within the I(0) category we have the white noise process but also other processes allowing,
for example, some type of weak (ARMA) autocorrelation.

Using a Binomial expansion on the polynomial in B in the left hand side of (1), xt can be expressed in
terms of all its past history, adopting the form of an in�nite AR process,

 

and thus, the differencing parameter d can be taken as a measure of the degree of persistence of the
data, since the higher the value of d is, the higher the association between observations is, even if they
are far apart in time. The estimation is conducted via Whittle function in the frequency domain
(Dahlhaus, 1989) by implementing a very simple version of Robinson’s (1994) tests, widely used in recent
years in empirical applications of environmental studies (see, e.g., Nikolopoulos et al., 2019; Caporale et
al., 2021, Gil-Alana and Sakiru, 2021; etc.).

4. Empirical Results
We look at the following regression model,

    (2)
where yt refers to the observed time series; β0 and β1 are the coe�cients corresponding respectively to the
intercept and a linear time trend, and xt is supposed to be I(d) where d is another parameter that is also
estimated from the data. Dealing with the error term ut, we assume �rst that it is a white noise process,

and later, we assume (weak) autocorrelation based on Bloom�eld (1973)1. Tables 1 and 2 refer to the case of white

noise errors, while Tables 3 and 4 to the model of Bloom�eld (1973) for the error term.Table 1 shows the values of the
differencing parameter, d, and their 95% con�dence bands under the three classical assumptions in the
unit root literature of: i) no deterministic terms, ii) an intercept and iii) an intercept with a linear time trend,
with the selected model for each series presented in bold in the table. The �rst thing we observe in this
table is that the time trend is required in a number of cases, in particular in 13 out of the 37 countries
examined; in another group of 22 countries, the intercept is statistically signi�cant, while for two countries
(Finland and the USA) both coe�cients (intercept and time trend) are found to be statistically
insigni�cant. The estimated coe�cients are displayed in Table 2, and the highest time trend coe�cient
corresponds to Mexico (3.0297), followed by Turkey (2.5666) and Australia (2.1189). Moving now to the
estimated orders of integration, we observe that the results are very heterogeneous across the countries:
Finland is the only country showing statistical evidence of mean reversion (d < 1); the unit root null (d = 1)
cannot be rejected in the cases of Norway or Iceland; for all the other countries the orders of integration
are substantially higher than 1.
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Table 1
Estimates of d: White noise errors

Country No terms An intercept An intercept and a linear time trend

AUSTRALIA 1.14 (1.07, 1.23) 1.14 (1.07, 1.23) 1.15 (1.07, 1.24)

AUSTRIA 1.15 (1.09, 1.23) 1.23 (1.17, 1.30) 1.23 (1.18, 1.30)

BELGIUM 1.14 (1.07, 1.22) 1.15 (1.08, 1.23) 1.15 (1.08, 1.23)

CANADA 1.19 (1.13, 1.27) 1.18 (1.12, 1.27) 1.19 (1.13, 1.28)

CHILE 1.18 (1.13, 1.24) 1.18 (1.13, 1.24) 1.19 (1.14, 1.25)

COLOMBIA 1.18 (1.14, 1.24) 1.18 (1.14, 1.24) 1.19 (1.15, 1.25)

CZECH REPUBLIC 1.30 (1.22, 1.39) 1.38 (1.30, 1.46) 1.38 (1.30, 1.46)

DENMARK 1.36 (1.29, 1.44) 1.38 (1.31, 1.46) 1.38 (1.31, 1.45)

ESTONIA 1.46 (1.38, 1.55) 1.49 (1.41, 1.59) 1.49 (1.41, 1.59)

FINLAND 0.59 (0.52, 0.68) 0.59 (0.53, 0.68) 0.59 (0.52, 0.68)

FRANCE 1.10 (1.04, 1.18) 1.25 (1.20, 1.31) 1.25 (1.20, 1.31)

GERMANY 1.32 (1.24, 1.43) 1.40 (1.31, 1.50) 1.40 (1.31, 1.50)

GREECE 1.17 (1.11, 1.25) 1.20 (1.15, 1.27) 1.20 (1.15, 1.27)

HUNGARY 1.37 (1.28, 1.49) 1.40 (1.30, 1.52) 1.40 (1.30, 1.52)

ICELAND 1.05 (0.98, 1.14) 1.05 (0.98, 1.14) 1.05 (0.98, 1.15)

IRELAND 1.16 (1.08, 1.25) 1.33 (1.26, 1.42) 1.33 (1.26, 1.42)

ISRAEL 1.21 (1.14, 1.31) 1.22 (1.15, 1.32) 1.23 (1.16, 1.32)

ITALY 1.06 (0.99, 1.14) 1.10 (1.05, 1.17) 1.11 (1.05, 1.18)

JAPAN 1.13 (1.07, 1.22) 1.22 (1.16, 1.30) 1.22 (1.16, 1.30)

KOREA 1.24 (1.19, 1.31) 1.25 (1.19, 1.31) 1.25 (1.19, 1.31)

LATVIA 1.48 (1.37, 1.64) 1.72 (1.55, 1.94) 1.72 (1.55, 1.94)

LITHUANIA 1.42 (1.32, 1.55) 1.46 (1.36, 1.60) 1.46 (1.36, 1.60)

LUXEMBOURG 1.22 (1.15, 1.31) 1.24 (1.17, 1.33) 1.24 (1.17, 1.33)

MEXICO 1.20 (1.15, 1.25) 1.20 (1.15, 1.25) 1.21 (1.16, 1.26)

NETHERLANDS 1.24 (1.18, 1.30) 1.24 (1.18, 1.30) 1.24 (1.18, 1.30)

Values in parenthesis indicate the 95% con�dence interval of the non-rejection values of d using
Robinson (1994). In bold, the selected speci�cation for the deterministic terms in each series.
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Country No terms An intercept An intercept and a linear time trend

NEW ZEALAND 1.14 (1.08, 1.21) 1.14 (1.08, 1.21) 1.15 (1.09, 1.22)

NORWAY 1.01 (0.95, 1.08) 1.01 (0.95, 1.09) 1.01 (0.95, 1.09)

POLAND 1.33 (1.24, 1.43) 1.34 (1.25, 1.45) 1.34 (1.26, 1.45)

PORTUGAL 1.12 (1.05, 1.21) 1.14 (1.08, 1.23) 1.15 (1.08, 1.23)

SLOVAKIA 1.15 (1.08, 1.23) 1.15 (1.09, 1.24) 1.16 (1.09, 1.24)

SLOVENIA 1.07 (1.02, 1.13) 1.08 (1.03, 1.14) 1.08 (1.03, 1.15)

SPAIN 1.14 (1.08, 1.21) 1.15 (1.09, 1.22) 1.15 (1.09, 1.22)

SWEDEN 1.32 (1.25, 1.41) 1.39 (1.32, 1.47) 1.39 (1.32, 1.47)

SWITZERLAND 1.18 (1.11, 1.26) 1.26 (1.20, 1.31) 1.26 (1.20, 1.31)

TURKEY 1.15 (1.08, 1.25) 1.16 (1.09, 1.27) 1.17 (1.09, 1.28)

UK 1.20 (1.13, 1.29) 1.23 (1.16, 1.31) 1.23 (1.17, 1.32)

USA 1.31 (1.21, 1.43) 1.31 (1.21, 1.43) 1.31 (1.22, 1.43)

Values in parenthesis indicate the 95% con�dence interval of the non-rejection values of d using
Robinson (1994). In bold, the selected speci�cation for the deterministic terms in each series.
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Table 2
Estimated coe�cients in Table 1: White noise errors

Country d Intercept

(t-value)

Time trend

(t-value)

AUSTRALIA 1.15 (1.07, 1.24) -1.3130 (-0.18) 2.1189 (2.21)

AUSTRIA 1.23 (1.18, 1.30) 9.6768 (16.84) 0.2017 (1.73)

BELGIUM 1.15 (1.08, 1.23) 12.1843 (4.68) ---

CANADA 1.19 (1.13, 1.28) 0.6221 (0.12) 1.6801 (1.97)

CHILE 1.19 (1.14, 1.25) 2.3065 (1.13) 0.7652 (2.29)

COLOMBIA 1.19 (1.15, 1.25) 6.2679 (1.68) 1.5465 (2.53)

CZECH REPUBLIC 1.38 (1.30, 1.46) 21.9430 (11.23) ---

DENMARK 1.38 (1.31, 1.46) 7.7977 (5.93) ---

ESTONIA 1.49 (1.41, 1.59) 1.8773 (5.97) ---

FINLAND 0.59 (0.52, 0.68) --- ---

FRANCE 1.25 (1.20, 1.31) 146.7798 (28.79) ---

GERMANY 1.40 (1.31, 1.50) 77.3950 (9.48) ---

GREECE 1.20 (1.15, 1.27) 6.4508 (6.96) ---

HUNGARY 1.40 (1.30, 1.52) 16.2086 (5.38) ---

ICELAND 1.05 (0.98, 1.15) 0.1397 (1.26) 0.0192 (2.19)

IRELAND 1.33 (1.26, 1.42) 35.3033 (27.48) ---

ISRAEL 1.22 (1.15, 1.32) 2.0047 (5.56) ---

ITALY 1.11 (1.05, 1.18) 65.0932 (11.41) 1.0835 (1.75)

JAPAN 1.22 (1.16, 1.30) 113.0488 (15.56) ---

KOREA 1.25 (1.19 1.31) 9.4460 (2.78) ---

LATVIA 1.72 (1.55, 1.94) 6.1218 (2.83) ---

LITHUANIA 1.46 (1.36, 1.60) 6.7481 (5.90) ---

LUXEMBOURG 1.24 (1.17, 1.33) 0.5513 (7.98) ---

MEXICO 1.21 (1.16, 1.26) 22.7619 (2.89) 3.0297 (2.11)

The values in parenthesis in column 2 are the 95% con�dence intervals. In columns 3 and 4 they are t-
values.
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Country d Intercept

(t-value)

Time trend

(t-value)

NETHERLANDS 1.24 (1.18, 1.30) 10.2021 (1.66) ---

NEW ZEALAND 1.15 (1.09, 1.22) 0.9234 (0.46) 0.7229 (2.73)

NORWAY 1.01 (0.95, 1.09) 1.8700 (3.14) 0.1188 (3.10)

POLAND 1.34 (1.25, 1.45) 39.4288 (4.22) ---

PORTUGAL 1.14 (1.08, 1.23) 7.4941 (6.95) ---

SLOVAKIA 1.15 (1.09, 1.24) 5.4500 (3.06) ---

SLOVENIA 1.08 (1.03, 1.15) 1.6327 (4.65) 0.0597 (1.84)

SPAIN 1.15 (1.09, 1.22) 39.7281 (5.47) 1.7364 (1.79)

SWEDEN 1.39 (1.32, 1.47) 6.3292 (11.17) ---

SWITZERLAND 1.26 (1.20, 1.31) 10.6917 (14.92) ---

TURKEY 1.17 (1.09, 1.28) 52.6523 (5.85) 2.5666 (1.92)

UK 1.23 (1.16, 1.31) 26.7184 (9.02) ---

USA 1.31 (1.21, 1.43) --- ---

The values in parenthesis in column 2 are the 95% con�dence intervals. In columns 3 and 4 they are t-
values.
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Table 3
Estimates of d: Autocorrelated (Bloom�eld) errors

Country No terms An intercept An intercept and a linear time trend

AUSTRALIA 1.12 (1.02, 1.28) 1.12 (1.02, 1.28) 1.14 (1.03, 1.29)

AUSTRIA 1.32 (1.17, 1.49) 1.48 (1.32, 1.69) 1.49 (1.34, 1.69)

BELGIUM 1.22 (1.09, 1.41) 1.25 (1.12, 1.42) 1.25 (1.13, 1.42)

CANADA 1.15 (1.08, 1.25) 1.15 (1.08, 1.25) 1.16 (1.09, 1.27)

CHILE 1.29 (1.20, 1.45) 1.29 (1.20, 1.42) 1.30 (1.21, 1.45)

COLOMBIA 1.27 (1.21, 1.35) 1.27 (1.21, 1.35) 1.29 (1.23, 1.37)

CZECH REPUBLIC 1.29 (1.16, 1.47) 1.41 (1.27, 1.58) 1.41 (1.27, 1.58)

DENMARK 1.46 (1.33, 1.60) 1.44 (1.34, 1.59) 1.44 (1.34, 1.59)

ESTONIA 1.57 (1.37, 1.82) 1.59 (1.38, 1.81) 1.59 (1.38, 1.81)

FINLAND 0.61 (0.50, 0.73) 0.61 (0.51, 0.73) 0.61 (0.51, 0.73)

FRANCE 1.21 (1.09, 1.36) 1.64 (1.50, 1.78) 1.64 (1.50, 1.78)

GERMANY 1.29 (1.14, 1.47) 1.34 (1.21, 1.55) 1.34 (1.21, 1.55)

GREECE 1.29 (1.18, 1.33) 1.36 (1.26, 1.49) 1.36 (1.26, 1.49)

HUNGARY 1.19 (1.04, 1.38) 1.18 (1.04, 1.36) 1.18 (1.04, 1.36)

ICELAND 0.98 (0.90, 1.06) 0.98 (0.91, 1.07) 0.98 (0.90, 1.07)

IRELAND 1.23 (1.11, 1.40) 1.29 (1.17, 1.44) 1.29 (1.17, 1.44)

ISRAEL 1.22 (1.12, 1.38) 1.23 (1.12, 1.39) 1.23 (1.12, 1.39)

ITALY 1.14 (1.03, 1.29) 1.23 (1.14, 1.36) 1.24 (1.14, 1.36)

JAPAN 0.88 (0.82, 0.97) 1.23 (1.05, 1.73) 1.22 (1.05, 1.73)

KOREA 1.43 (1.32, 1.58) 1.44 (1.33, 1.58) 1.44 (1.33, 1.58)

LATVIA 1.12 (0.96, 1.31) 1.00 (0.87, 1.18) 1.00 (0.87, 1.18)

LITHUANIA 1.16 (1.00, 1.35) 1.16 (1.01, 1.34) 1.16 (1.01, 1.34)

LUXEMBOURG 1.28 (1.14, 1.47) 1.30 (1.17, 1.47) 1.31 (1.17, 1.47)

MEXICO 1.38 (1.30, 1.51) 1.40 (1.31, 1.52) 1.40 (1.32, 1.52)

NETHERLANDS 1.53 (1.40, 1.69) 1.52 (1.40, 1.69) 1.52 (1.40, 1.69)

Values in parenthesis indicate the 95% con�dence interval of the non-rejection values of d using
Robinson (1994). In bold, the selected speci�cation for the deterministic terms in each series.
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Country No terms An intercept An intercept and a linear time trend

NEW ZEALAND 1.20 (1.13, 1.34) 1.20 (1.13, 1.34) 1.24 (1.14, 1.34)

NORWAY 1.03 (0.96, 1.15) 1.04 (0.97, 1.17) 1.05 (0.97, 1.17)

POLAND 1.21 (1.07, 1.39) 1.20 (1.06, 1.37) 1.20 (1.06, 1.37)

PORTUGAL 1.13 (1.03, 1.27) 1.15 (1.05, 1.28) 1.15 (1.05, 1.28)

SLOVAKIA 1.28 (1.14, 1.46) 1.30 (1.16, 1.48) 1.30 (1.16, 1.48)

SLOVENIA 1.31 (1.19, 1.46) 1.35 (1.23, 1.50) 1.35 (1.23, 1.50)

SPAIN 1.59 (1.33, 2.00) 1.55 (1.31, 2.01) 1.55 (1.31, 2.01)

SWEDEN 1.37 (1.24, 1.53) 1.43 (1.31, 1.60) 1.43 (1.31, 1.60)

SWITZERLAND 1.29 (1.16, 1.47) 1.41 (1.27, 1.58) 1.41 (1.27, 1.58)

TURKEY 1.04 (0.97, 1.13) 1.01 (0.95, 1.11) 1.02 (0.94, 1.11)

UK 1.27 (1.13, 1.45) 1.29 (1.17, 1.44) 1.30 (1.17, 1.44)

USA 1.19 (1.08, 1.38) 1.19 (1.07, 1.38) 1.19 (1.07, 1.37)

Values in parenthesis indicate the 95% con�dence interval of the non-rejection values of d using
Robinson (1994). In bold, the selected speci�cation for the deterministic terms in each series.
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Table 4
Estimated coe�cients in Table 3: Autocorrelation (Bloom�eld) errors

Country d Intercept

(t-value)

Time trend

(t-value)

AUSTRALIA 1.14 (1.03, 1.29) -1.3425 (-0.18) 2.1273 (2.34)

AUSTRIA 1.48 (1.32, 1.69) 9.7866 (19.12) ---

BELGIUM 1.25 (1.12, 1.42) 12.1852 (4.80) ---

CANADA 1.16 (1.09, 1.27) 0.5516 (0.10) 1.7160 (2.34)

CHILE 1.29 (1.20, 1.45) --- ---

COLOMBIA 1.27 (1.21, 1.35) 7.1340 (2.01) ---

CZECH REPUBLIC 1.41 (1.27, 1.58) 21.9434 (11.35) ---

DENMARK 1.44 (1.34, 1.59) 7.7987 (6.07) ---

ESTONIA 1.59 (1.38, 1.81) 1.8773 (1.59) ---

FINLAND 0.61 (0.50, 0.73) --- ---

FRANCE 1.64 (1.50, 1.78) 146.8149 (35.24) ---

GERMANY 1.34 (1.21, 1.55) 77.3850 (9.30) ---

GREECE 1.36 (1.26, 1.49) 6.4544 (7.39) ---

HUNGARY 1.18 (1.04, 1.36) 16.2063 (5.13) ---

ICELAND 0.98 (0.90, 1.07) 0.1340 (1.21) 0.0195 (3.20)

IRELAND 1.29 (1.17, 1.44) 35.2988 (27.18) ---

ISRAEL 1.23 (1.12, 1.39) 2.0047 (5.57) ---

ITALY 1.23 (1.14, 1.36) 65.7741 (12.01) ---

JAPAN 1.23 (1.05, 1.73) 113.0952 (7.00)  

KOREA 1.44 (1.33, 1.58) 9.4576 (3.02) ---

LATVIA 1.00 (0.87, 1.18) 6.1337 (11.89) ---

LITHUANIA 1.16 (1.01, 1.34) 6.7463 (5.54) ---

LUXEMBOURG 1.30 (1.17, 1.47) 0.5514 (8.15) ---

MEXICO 1.40 (1.31, 1.52) 21.4450 (3.43) ---

The values in parenthesis in column 2 are the 95% con�dence intervals. In columns 3 and 4 they are t-
values.
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Country d Intercept

(t-value)

Time trend

(t-value)

NETHERLANDS 1.52 (1.40, 1.69) 10.2134 (1.89)  

NEW ZEALAND 1.24 (1.14, 1.34) 0.9888 (0.51) 0.6893 (1.68)

NORWAY 1.05 (0.97, 1.17) 1.8860 (3.17) 0.1180 (2.51)

POLAND 1.20 (1.06, 1.37) 39.4106 (4.07) ---

PORTUGAL 1.15 (1.05, 1.28) 7.4941 (6.95) ---

SLOVAKIA 1.30 (1.16, 1.48) 5.4509 (3.20) ---

SLOVENIA 1.35 (1.23, 1.50) 1.6747 (5.28) ---

SPAIN 1.55 (1.31, 2.01) 40.7860 (6.64) ---

SWEDEN 1.43 (1.31, 1.60) 6.3294 (11.38) ---

SWITZERLAND 1.41 (1.27, 1.58) 10.6393 (15.46) ---

TURKEY 1.02 (0.94, 1.11) 51.8872 (5,75)) 2.5485 (4.16)

UK 1.29 (1.17, 1.44) 26.7275 (9.22) ---

USA 1.19 (1.07, 1.37) 3.2966 (0.09) 12.6060 (2.11)

The values in parenthesis in column 2 are the 95% con�dence intervals. In columns 3 and 4 they are t-
values.

Tables 3 and 4 are similar to Tables 1 and 2 but assuming that the error term is autocorrelated. However,
instead of imposing a speci�c ARMA model for the error term, we employ a non-parametric
approximation based on Bloom�eld (1973). Starting with the results displayed in Table 3, we observe that
the time trend coe�cient is now signi�cant in only 7 countries (of which 6, the time trend was also
signi�cant under white noise errors); for 28 countries the intercept seems to be su�cient, and for Chile
and Finland, no deterministic terms are required. Focussing on the estimates of d, we observe that once
more, Finland is the only country displaying mean reversion; also, apart from Norway and Iceland, the unit
root null rejected cannot be rejected now in the cases of Latvia and Turkey, and the null hypothesis of I(1)
is rejected in all the remaining countries in favour of d > 1.

Finally, Tables 5 and 6 display summary results in relation with the time trends (Table 5) and with the
orders of integration (Table 6). Starting with the time trends, we observe that if ut is autocorrelated the
coe�cient for the time trend is very large in the case of the US (12.6060) followed by Turkey, Australia
and Canada which also display large positive values under both types of speci�cations for the error term.
These coe�cients are all positive, which is not good for the environment. On the other hand, there are 22
countries with insigni�cant time trends. Looking, �nally, at the orders of integration, the results are also
robust across the errors, and mean reversion only seems to happen in the case of Finland (0.59 with
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white noise errors and 0.61 under autocorrelation); Norway and Iceland show evidence of I(1) behaviour
under the two speci�cations and also Latvia and Turkey with Bloom�eld disturbances. In the remaining
countries, the degree of differentiation is signi�cantly higher than 1.

 
Table 5

Summary results: Statistical signi�cant time trend
coe�cients

White noise errors Autocorrelated errors

MEXICO (3.0297)

TURKEY (2.5666)

AUSTRALIA (2.1189)

SPAIN (1.7364)

CANADA (1.6801)

COLOMBIA (1.5465)

ITALY (1.0835)

CHILE (0.7652)

NEW ZEALAND (0.7229)

AUSTRIA (0.2017)

NORWAY (0.1188)

SLOVENIA (0.0597)

ICELAND (0.0192)

USA (12.6060)

TURKEY (2.5485)

AUSTRALIA (2.1273)

CANADA (1.7160)

NEW ZEALAND (0.6893)

NORWAY (0.1180)

ICELAND (0.0195)
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Table 6
Summary results: Orders of integration

White noise errors Autocorrelated errors

d < 1 d = 1 d > 1 d < 1 d = 1 d > 1

FINLAND
(0.59)

NORWAY
(1.01)

ICELAND
(1.05)

SLOVENIA (1.08)

ITALY (1.11)

PORTUGAL
(1.14)

NEW ZEALAND
(1.15)

SLOVAKIA (1,.15)

SPAIN (1.15)

TURKEY (1.17)

CANADA (1.19)

CHILE (1.19)

COLOMBIA (1.19)

GREECE (1.20)

MEXICO (1.21)

ISRAEL (1.22)

JAPAN (1.22)

UK (1.23)

NETHERLANDS
(1.24)

FRANCE (1.25)

KOREA (1.25)

SWITZERLAND
(1.26)

USA (1.31)

IRELAND (1.33)

POLAND (1.34)

CZECH REP.
(1.38)

DENMARK (1.38)

FINLAND
(0.61)

ICELAND
(0.98)

LATVIA
(1.00)

TURKEY
(1.02)

NORWAY
(1.05)

AUSTRALIA
(1.14)

PORTUGAL (1.15)

LITIHUANIA
(1.16)

C.ANADA (1.16)

HUNGARY (1.18)

POLAND (1.20)

ISRAEL (1.23)

ITALY (1.23)

JAPAN (1.23)

NEW ZEALAND
(1.24)

BELGIUM (1.25)

COLOMBIA (1.27)

IRELAND (1.29)

CHILE (1.29)

UK (1.29)

SLOVAKIA (1.30)

LUXEMBOURG
(1.31)

GERMANY (1.34)

SLOVENIA (1.35)

GREECE (1.36)

MEXICO (140)

SWITZERLAND
(1.41)

CZECH REP.
(1.41)

SWEDEN (1.43)
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White noise errors Autocorrelated errorsSWEDEN (1.39)

GERMANY (1.40)

HUNGARY (1.40)

LITUANIA (1.46)

ESTONIA (1.49)

LATVIA (1.72)

KOREA (1.44)

DENMARK (1.44)

AUSTRIA (1.48)

NETHERLANDS
(1.52)

SPAIN (1.55)

ESTONIA (1.59)

FRANCE (1.64)

One of the justi�cations for the foregoing empirical �ndings is that the drivers of ammonia tend to be
persistent. According to Narayan (2007), a series which is dependent on other series which are persistent
will inherit this persistence, and transmit to several other series in a country. Nguyen et al. (2020) has
shown that determinants of ammonia emissions- income per capita, energy consumption per capita and
foreign direct investment are very persistent.

5. Concluding Comments
We have investigated in this work the statistical properties of ammonia (NH3) historical time series data
in 37 countries for the time period from 1770 to 2019, annually. Using fractional integration methods our
results indicate that reversion to the mean only takes place in the case of Finland, while the unit root
hypothesis cannot be rejected for Norway or Iceland. In the remaining cases, the estimated values of d
are much higher than 1, and this result is robust across the different speci�cations for the error term. 

An implication of the empirical results of this study is that, shocks to ammonia emissions in these
countries will have permanent effects. Therefore, a combination of appropriate policies and technologies
should be adopted to address any upsurge in ammonia emissions.  There are several policies that can be
utilised to address ammonia emissions such as the introduction of emission tax, a total ban on solid urea
fertilisers, the funding and expansion of conservation areas, offering incentives to assist suppliers of
sustainable commodities, improving private sector participation in the supply chains of agricultural
products. 

The available technologies include condensers (which are utilised to eradicate ammonia by converting
the gas to a liquid), wet scrubbers (which are devices used in removing ammonia from furnace �ue gas or
from other gas streams), urease inhibitor (which is a chemical that assists the slowing down of the
conversion of urea to ammonium) and the recycling of ammonia. Countries such as the UK are in the
process of introducing large scale solid urea fertilisers (Society of Chemical Industry, 2020) 

Other modelling approaches still within the context of fractional integration can be taken into account.
Thus, for example, non-linearities and breaks are topics which are likely to occur when using long
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historical data, and many authors have found that this I(d) speci�cation is very much related to these two
issues (Diebold and Inoue, 2001; Granger and Hyung, 2004; Ohanissian et al., 2008; etc.). Then,
alternative non-linear deterministic approaches, based, for example, on Chebyshev’s polynomials in time
(Cuestas and Gil-Alana, 2016) or on Fourier transforms (Yaya et al., 2020) can be used in these or in
alternative datasets.
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