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We investigate historical data for crude oil prices using autoregressive fractionally 
integrated moving average (ARFIMA) models to determine whether shocks in the series 
have transitory or permanent effects. Our best specification is an ARFIMA(2,d,2) with an 
estimated value of d around 0.4, but its confidence interval is wide and does not allow us 
to either reject the I(0) or the I(1) hypotheses. This high level of uncertainty may be due 
to the presence of breaks or non-linear trends in the data. 

I. Introduction   

The objective of this paper is to evaluate the market 
persistence properties for annual historical crude oil prices 
from 1861 to 2019, studying its evolution across time. In 
particular, we examine the order of integration of the se-
ries, allowing this number to be a fractional value. The frac-
tional integration or I(d) approach consists of taking d-dif-
ferences in a given time series to render it stationary I(0), 
where d can be any real value, thus allowing for fractional 
degrees of differentiation. It permits us to distinguish be-
tween mean reversion and lack of it in a more flexible way 
than the standard methods that only use the values 0 (for 
stationary series) and 1 (for nonstationary ones). In the 
context of real values of d, mean reversion occurs as long as 
d is smaller than 1. The lower the value of d is, the faster 
the process of convergence to its original long term projec-
tion. 
Earlier studies of fractional integration in the context of 

oil prices include, among others, Elder and Serletis (2008), 
Choi and Hammoudeh (2009), Gil-Alana and Yaya (2014), 
Gil-Alana et al. (2016), Gil-Alana, Yaya, and Awe (2017), 
Monge et al. (2017a, 2017b), Gil-Alana and Monge (2020), 
and Monge and Gil-Alana (2021). 
It should be noted that that the AIC and BIC may not 

neccesarily be the best criteria in applications involving 
fractional integration (Beran et al., 1998; Hosking, 1984). 

II. Data and Empirical Results      

In order to carry out our analysis, data was drawn from 
Our World in Data, a project of the Global Change Data 
Lab, a non-profit organization based in the United Kingdom 

(Registered Charity Number 1186433). Historical crude oil 
prices analyzed are from 1861 to 2019 with annual data. Our 
World in Data is produced as a collaborative effort between 
researchers at the University of Oxford, who are the scien-
tific contributors of the website content, and the non-profit 
organization, Global Change Data Lab, which owns, pub-
lishes and maintains the website and the data tools. At the 
University of Oxford, the research team is affiliated with the 
Oxford Martin Programme on Global Development, whose 
mission is to produce academic research on the world’s 
largest problems based on empirical analysis of global data. 
Using this dataset, we first conduct standard unit root 

tests (Dickey & Fuller, 1979; Kwiatkowski et al., 1992; 
Phillips & Perron, 1988) on the crude oil prices. According 
to the results, as presented in Table 1, the time series ana-
lyzed are clearly non-stationary I(1). The results are avail-
able from the authors upon request. 
Nevertheless, authors such as Diebold and Rudebusch 

(1991), Hassler and Wolters (1994) and Lee and Schmidt 
(1996) show that the unit root methods have low power 
under fractional alternatives. For this reason, we use the 
ARFIMA (p, d, q) model where the mathematical notation 
is: 

where the time-series  follows an inte-
grated order process  (and is denoted as  and 
where  refers to any real value,  refers to the lag-operator 

 and  is ARMA(p, q) such that εt is a white 
noise process. The Akaike information criterion (Akaike, 
1973) and Bayesian information criterion (Akaike, 1979) 
were used to select the appropriate AR and MA orders in 
the models. 
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Table 1. Unit root test results     

ADF PP KPSS 

(i) (ii) (iii) (ii) (iii) (ii) (iii) 

Oil prices -0.9827 -1.4693 -2.5776 -1.1455 -2.2716 1.6264 0.4792 

Notes: This table reports the unit root test results. (i) Refers to the model with no deterministic components; (ii) with an intercept, and (iii) with a linear time trend. I reflect t-statis-
tic with test critical value at 5%. 

Table 2. Results of long memory tests      

Data Analyzed ARFIMA model d Std. Error Interval I(d) 

Oil prices 

ARFIMA (0, d, 0) 0.9506 0.0757 [0.83, 1.07] I(1) 

ARFIMA (1, d, 0) 0.6858 0.1556 [0.43, 0.94] I(d) 

ARFIMA (2, d, 0) 0.7777 0.1658 [0.50, 1.05] I(1) 

ARFIMA (0, d, 1) 0.7325 0.0872 [0.59, 0.88] I(d) 

ARFIMA (0, d, 2) 0.7790 0.1323 [0.56, 1.00] I(1) 

ARFIMA (1, d, 1) 0.7817 0.1065 [0.61, 0,96] I(d) 

ARFIMA (2, d, 1) 0.7604 0.1543 [0.51, 1.01] I(1) 

ARFIMA (1, d, 2) 0.7754 0.1167 [0.58, 0.97] I(d) 

ARFIMA (2, d, 2) 0.4085 0.6464 [-0.65, 1.47] I(0), I(d), I(1) 

Notes: The table reports the long memory test results. In bold we have selected the ARFIMA (2, d, 2) model following the criteria (greater value) of AIC and BIC. 

The  parameter has been estimated considering all 
combinations of AR and MA terms  for each time-
series, with their confidence bands at 95%. The results have 
been displayed in Table 2. 
We observe that the estimates of  are close to 0.70 in 

almost all cases. The exceptions are the ARFIMA (0, d, 0) 
with a value of d close to 1 (0.95), and where the unit root 
null hypothesis cannot be rejected and the ARFIMA (2, d, 
2) model is precisely the one selected with the AIC and BIC 
mentioned above, and that gives an estimator of 
It may then be concluded that the time series is mean re-
verting where the order of integration is smaller than 1, 
however, we also observe that the standard error in this 
case is very large, implying that based on the wide confi-
dence bands, we are not able to reject the hypotheses of I(0) 

and I(1) behaviour. This fact may occur due to the presence 
of structural changes throughout the period examined. 

III. Conclusion   

The orders of integration in annual historical crude oil 
prices have been investigated in this work for the time pe-
riod of 1861 to 2019. Our goal is to demonstrate whether 
the results, based on fractional integration methods, show 
evidence of persistence or mean reversion. Based on like-
lihood criteria, it is found that the estimated value of d is 
around 0.40 and thus shows mean reversion, but the confi-
dence band is so wide that the I(0) and I(1) hypotheses can-
not be rejected. 
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