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Abstract
The degree of persistence in daily data for  PM2.5 in 20 relevant megacities such as Bangkok, Beijing, Mumbai, Calcutta, 
Canton, Dhaka, Delhi, Jakarta, London, Los Angeles, Mexico City, Moscow, New York, Osaka. Paris, Sao Paulo, Seoul, 
Shanghai, Tientsin, and Tokyo is examined in this work. The analysis developed is based on fractional integration techniques. 
Specifically, the differentiation parameter is used to measure the degree of persistence in the series under study, which col-
lects data on daily measurements carried out from January 1, 2018, to December 31, 2020. The results obtained show that the 
estimated values for the differentiation parameter are restricted to the interval (0, 1) in all cases, which allows us to conclude 
that there is a mean reverting pattern and, therefore, transitory effects of shocks.
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Introduction

Human health, and particularly for those who live in cit-
ies, can be seriously affected by poor air quality. Recent 
studies on health and the environment have pointed out that 
one of the most harmful pollutants for health is suspended 
particles, especially the finest particles. Fine particles, 
also called particulate matter or  PM2.5, can penetrate deep 
into the lungs and cause them to become inflamed, putting 
patients with heart and lung disease in serious danger. In 
turn, these particles can carry carcinogenic compounds that 
could be adsorbed on the surface of the lungs. All of this 
leads research on the dynamics of atmospheric pollution to 

acquire great importance, specifically research projects that 
contribute and develop models for prediction purposes and, 
as a consequence, that enable the design of air quality man-
agement policies.

Based on the above, the present paper investigates the 
time series properties corresponding to daily data of  PM2.5 
on the twenty megacities around the world, investigating its 
evolution across time. We measure the degree of persistence 
to determine whether the shocks in the series have perma-
nent or transitory effects. However, instead of using classical 
methods, which are based on a “well” I(0) or short-memory 
behaviour of the error term, we consider the possibility of 
long memory, which is a feature very often observed in envi-
ronmental and climatological data (Liu et al. 2014; Yaya 
et al. 2015; Knight et al. 2017; Li et al. 2017; Bai et al. 2019; 
Qi et al. 2019; Zhao et al. 2019; Gil-Alana and Lenti 2021; 
Gil-Alana et al. 2020a, b; Sakiru et al. 2021; etc.).

The term “megacity” is used to define a metropolitan area 
with more than 10 million inhabitants. Typically, these urban 
environments are made up of one, two, or more metropolitan 
areas that have been physically joined together (Rollandi 
2012). However, information from different sources differs 
on the number of inhabitants in megacities, mainly because 
the urban area is spread over territories that are divided by 
different political entities, and sometimes, there is no clear 
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definition of urban boundaries. A characteristic of Megaci-
ties is that they are polycentric, which means that they do not 
have a single centre, but that within the same urban exten-
sion there are different areas with the capacity to attract eco-
nomic, social, and political activities. In this case, megaci-
ties are structured with the existence of different centralities. 
There are major differences between megacities located in 
developed countries and those in developing countries. On 
the one hand, in developed countries, there are conurbations 
organised by the extension of infrastructures over territories 
that are being incorporated in an orderly fashion. However, 
in megacities in developing countries, conurbations are cre-
ated through informal settlements, which have no planning 
or infrastructure. In fact, urban planning in these environ-
ments usually takes place after the consolidation of an urban 
area and is reduced to providing infrastructure for the new 
neighbourhood (Giglia 2001).

On these occasions, urban management focuses on what 
is urgent rather than what is important. Governments are 
often more concerned with finding solutions to specific, 
immediate, and emerging problems (flooding, rubbish, water 
supply, etc.) than with solving the pollution problems of an 
area in the medium or long term (Cantos 2011).

One of the most important reasons for the increase in 
environmental problems is population growth. In order to 
meet the needs of the population, industrial development 
is necessary. But increasing industrialisation causes rapid 
consumption of natural resources. In addition, the waste 
produced by production and consumption has a negative 
impact on the environment. Another negative factor in popu-
lation growth is unplanned urbanisation. As a consequence 
of unplanned urbanisation, pollution is increasing in urban 
centres. Air, water, and soil are polluted, negatively affecting 
living beings.

It is clear that how megacities continue to produce and 
consume energy and goods will be crucial to their social, 
ecological, and economic survival. In this context, policies 
related to environmental sustainability will be key to hope-
fully facing one of the great challenges facing humanity.

The concentration of the world’s population in urban 
centres is a growing trend. According to the United Nations 
(UN), about half of the world’s population (55%) now lives 
in urban areas; and by 2050, about two-thirds (68%) of all 
people are projected to reside in urban areas (World Popula-
tion Prospects 2019). The UN points out that while in 1990 
there were 10 megacities in the world, today their number 
has risen to 33, and they have grown from 7% of the world’s 
population to 13%, a trend that will continue in the future 
(UN 2019).

Population growth in megacities is mainly determined by 
migration. The explanation lies largely in the migratory flow, 
in the transfer of population from other populations, which 

does not necessarily have to become international immigra-
tion, since a large part of the world’s population will move 
from rural to urban areas (UN 2021). In this context, we have 
taken 20 megacities with different levels of industrialisation 
and development as reference for our study, which are located 
in different regions worldwide, and for which reliable records 
on  PM2.5 emissions are available. See Table 1 below that 
displays the population of these megacities in 2020.

The rest of the paper is structured as follows: The “A 
Review of the Literature” section shows a brief review of 
the literature on the topic. Data and the methodology and 
modelisation used in the paper are given in the third sec-
tion. The data used are presented in the fourth section. The 
empirical results are displayed in the fifth section, while the 
last section concludes the paper.

A review of the literature

Poor air quality can affect human health. Among the most 
harmful pollutants for health is particulate matter  (PM2.5). 
In recent years, greater attention has been paid to particles 
with a size smaller than 1 μm in diameter, which are known 
as an ultrafine fraction and to which it seems can be attrib-
uted a greater potential for damage (Lippmann 1989; Ostro 
et al. 1999; Castillejos et al. 2000; EPA 2002; Morgenstern 

Table 1  Population in the 20 megacities analysed in 2020

World Bank

City State Population

Bangkok Thailand 16.400.000
Beijing China 21.895.000
Bombay India 25.200.000
Calcutta India 16.800.000
Canton China 15.310.000
Dacca Bangladesh 28. 399. 000
Delhi India 30.300.000
Jakarta Indonesia 29.200.000
London UK 14.900.000
Los Angeles USA 17.800.000
Mexico Mexico 22.200.000
Moscow Russia 19.400.000
New York USA 22.100.000
Osaka Japan 17.700.000
Paris France 12.400.000
Sao Paulo Brasil 22.200.000
Seoul Korea 26.000.000
Shanghai China 38.000000
Tientsin China 12.000.000
Tokyo Japan 38.400000
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et al. 2007; Xing et al. 2016; Eguchi et al. 2018; Amsalu 
et al. 2019; etc.).

Suspended particles or fine particles can enter the lungs, 
causing inflammation in the lungs and producing serious 
diseases. Suspended particles also often carry carcinogenic 
compounds that can be absorbed by the lungs. The main 
components of the particles are metals (lead, iron, vanadium, 
nickel, copper, platinum, and others), organic compounds, 
material of biological origin (viruses, bacteria, animal, and 
plant remains, such as pollen fragments), ions (sulphates, 
nitrate, and acidity) and reactive gases (ozone, peroxides, 
and aldehydes), and their core is often made up of pure ele-
mental carbon (EPA 1999).

Air pollution is a global problem, affecting all countries 
regardless of their level of development. It can occur in 
indoor environments, where the main pollutant is tobacco, 
or in outdoor environments, in which case industry and mas-
sive vehicular load are the main associated factors. The rapid 
growth of cities coupled with the lack of effective transporta-
tion planning can be the cause of large and harmful levels 
of fine particulate matter  (PM2.5) in the air (Montes de Oca 
et al. 2010).

Numerous institutions in different countries and several 
studies have analyzed the connection between pollution and 
adverse health effects. Examples are the works by Schwartz 
and Marcus (1990), Anderson et al. (1996), Atkinson et al. 
(1999), Gardner and Dorling (1999), HEI (2002), EPA 
(2002), and WHO (2006). In the USA, Section 812 of the 
Clean Air Act Amendments requires the Environmental Pro-
tection Agency (EPA) to periodically evaluate the effects of 
the Clean Air Act on public health, the economy, and the 
environment. In this document, a series of measures are pro-
posed to improve air quality, as well as to establish a detailed 
program for compliance and maintenance of national air 
quality standards. In this sense, it is clearly important to 
investigate the dynamics of air pollution in order to develop 
adequate models for prediction purposes and to design poli-
cies to manage air quality.

In more developed cities, particulate pollution from car 
traffic is a major problem. In many cases, these cities have 
grown without proper planning of their growth in many 
areas, such as transport flow planning. The fact that we 
do not have frequent air quality data makes it difficult to 
assess health impacts and for governments, in some cases, 
to take policies on increasing transport flows seriously. In 
this respect, it is of vital importance to define an air qual-
ity standard in order to protect citizens (Cohen et al. 1997; 
Rosales-Castillo et al. 2001; Magas et al. 2007; Molnár et al. 
2007; Montes de Oca et al. 2010; Yuan et al. 2012; Steinle 
et al. 2013, 2015; Karagulian et al. 2019).

In this regard, the World Health Organization (WHO 
2006) has established an annual limit value of 10 μg/m3 for 
the concentration of  PM2.5 particles in the air. However, in 
some large cities, this value practically doubles, with the 
consequent impact on morbidity and mortality. Recently, the 
WHO has established new guideline values for particulate 
matter concentrations in the air based on concentrations of 
particles smaller than 10 μm in diameter  (PM10) and par-
ticles smaller than 2.5 μm in diameter  (PM2.5), although it 
clarifies that  PM2.5 values are preferable to  PM10. This pref-
erence is based on the fact that  PM10 has an important com-
ponent of natural origin, especially in southern European 
cities, such as air intrusions from North Africa. (Rodríguez 
et al. 2001; Escudero et al. 2005). However, in an urban 
atmosphere, the main contribution to  PM2.5 is due to engine 
combustion and has a less important natural component than 
 PM10 (Ballester et al. 2007), and therefore seems, a priori, 
to be a more reliable indicator for measuring anthropogenic 
activity. In addition, these fine particles penetrate deeper 
into the pulmonary alveoli producing more adverse health 
effects than particles of a larger diameter, such as  PM10 (De 
Kok et al. 2006). In another study, Linares and Díaz (2009) 
explain, for example, the association found between  PM2.5 
and children’s hospital admissions to the emergency room, 
compared to what had been detected with other pollutants. 
Similar evidence is also found in Bell et al. (2015), Patto 
et al. (2016), Nishikawa et al. (2021), and Ren et al. (2021) 
among many others.

In this article, we work with a long-memory perspective 
based on fractional integration. Long memory is an aspect of 
the time series where the high degree of dependence between 
indicators that are widely separated in time stands out. Ana-
lysing the bibliography on this methodology, we find that it 
has been used in many areas of knowledge, for example in 
the economic-financial field (Gil-Alana and Moreno 2012; 
Abritti et al. 2017; Kalemkerian and Sosa 2020; Murialdo 
et al. 2020; Qiu et al. 2020); in the tourism sector (Al-Shboul 
and Anwar 2017; Pérez-Rodríguez and Santana-Gallego 
2020), as well as in climatology and environmental sciences 
(Gil-Alana 2005, 2008, 2017; Vyushin and Kushner 2009; 
Franzke 2012; Ludescher et al. 2016; Barros et al. 2016; 
Tiwari et al. 2016; Bunde 2017; Yuan et al. 2019; Gil-Alana 
and Solarin 2018; Gil-Alana and Trani 2019; Bruneau et al. 
2020; Gil-Alana et al. 2020a, b; Xayasouk et al. 2020; Yaya 
et al. 2020). In this latter area, the most recent writing using 
fractional integration is that of Caporale et al. (2021). In the 
study, the authors investigate the statistical properties of daily 
 PM10 in eight European capitals (Amsterdam, Berlin, Brus-
sels, Helsinki, London, Luxembourg, Madrid, and Paris) dur-
ing the period 2014–2020.
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Methodology and modelization

We use techniques based on long-range dependence or long 
memory that imply that the infinite sum of the autocovari-
ances is infinite. Within this class of models, widely used in 
environmental studies, a very manageable one is that based 
on the concept of fractional integration that means that the 
number of differences required to render the series station-
ary and short memory or I(0) may be a fractional real value. 
According to the definitions provided in Granger (1980, 
1981), Granger and Joyeux (1980), and Hosking (1981), a 
covariance stationary process {x(t), t = 0, ±1, …} is said 
to be integrated of order d and denoted as I(d) if it can be 
expressed as

where L is the lag-operator, that is, Lkx(t) = x(t-k), and 
u(t) is I(0) or a short-memory process. Then, if d > 0, x(t) 
displays long memory (or long-range dependence) in the 
sense that the observations are highly dependent on time 
even if they are far distant, and the higher the value of d 
is, the higher the level of association between the obser-
vations is.

In the empirical application carried out in the “Empirical 
Results” section, we allow for deterministic terms such as an 
intercept and/or a linear time trend. Thus, we consider the 
following regression model:

where y(t) represents the observed data, α and β are the 
unknown coefficients, and x(t) is described by Eq. (1) so that 
x(t) is I(d). Thus, there are two relevant parameters here: β 
indicating the number of emissions per unit and d measuring 
the degree of persistence in the data.

The estimation is conducted via the Whittle function 
in the frequency domain by means of implementing a 
particular version of the tests of Robinson (1994) widely 
used in empirical applications in the environmental field 
(Gil-Alana 2009, 2017; Yuan et al. 2013; Gil-Alana and 
Sauci 2019; etc.).

Data

The series analysed corresponds to the air quality daily 
average taken from the World Air Quality Index (WAQI) 
at https:// aqicn. org/ map/ world/ es/. All data have been con-
verted using the United States Environmental Protection 
Agency (US EPA standard). More specifically, we use data 
from January 1, 2018, to December 31, 2020, concerning the 
20 megacities around the World: Bangkok, Beijing, Bom-
bay, Calcutta, Canton, Dacca, Delhi, Jakarta, London, Los 

(1)(1 − L)dx(t) = u(t), t = 1, 2,⋯ ,

(2)y(t) = � + �t + x(t), t = 1, 2,⋯

Angeles, Mexico City, Moscow, New York, Osaka, Paris, 
Sao Paulo, Seoul, Shanghai, Tientsin, and Tokyo. The series 
represents the daily level of quality in the air based on the 
measurement of  PM2.5 microparticles measured in micro-
grams per cubic meter of air (μg/m3). The original sources 
are Bangkok—Pollution Control Department of Thailand: 
http:// aqmth ai. com/ web/ main. php; Beijing—Beijing Envi-
ronmental Protection Monitoring Center: https:// www. 
bjmemc. com. cn; Bombay—U.S. Embassy and Consulates’ 
Air Quality Monitor in India: https:// in. usemb assy. gov/ 
embas sy- consu lates/ new- delhi/ air- quali ty- data/; Calcutta—
U.S. Embassy and Consulates’ Air Quality Monitor in India: 
https:// in. usemb assy. gov/ embas sy- consu lates/ new- delhi/ 
air- quali ty- data/; Canton—Guangdong Environmental Pro-
tection public network: www. gdep. gov. cn; Dacca - Dhaka 
Air Quality Monitor—US Consulate: https:// bd. usemb assy. 
gov/; Delhi—Delhi Pollution Control Committee (Govern-
ment of NCT of Delhi): http:// www. dpcca irdata. com/ dpcca 
irdata/ displ ay/ index. php; Jakarta—Badan Meteorologi, Kli-
matologi dan Geofisika (BMKG): https:// www. bmkg. go. 
id/; London—London Air Quality Network-Environmental 
Research Group, King’s College London: https:// londo nair. 
org. uk/ Londo nAir/ Defau lt. aspx; Los Angeles—South Coast 
Air Quality Management District (AQMD): http:// www. 
aqmd. gov/; Mexico City—National Institute of Ecology 
and Climate Change (INECC): http:// sinai ca. inecc. gob. mx/; 
Moscow—Moscow State environmental monitoring: https:// 
mosec om. mos. ru/; New York—New York State Department 
of Environmental Conservation (NYSDEC): https:// www. 
dec. ny. gov/; Osaka—Japan Atmospheric Environmental 
Regional Observation System: http:// soram ame. taiki. go. jp/; 
Paris—AirParif-Air quality monitoring association in Île-de-
France: https:// www. airpa rif. asso. fr/; Sao Paulo—CETESB 
São Paulo State Environmental Company: https:// cetesb. sp. 
gov. br/; Seoul—South Air Korea Environment Corporation: 
https:// www. airko rea. or. kr/ web; Shanghai—Shanghai Envi-
ronment Monitoring Center: https:// sthj. sh. gov. cn/; Tient-
sin—Tianjin Environmental Monitoring Center: http:// www. 
tjemc. org. cn/ html/1/ index. html; Tokyo—Tokyo, Japan Envi-
ronment Agency (Tokyo Metropolitan Government Bureau 
of Environment): https:// www. kankyo. metro. tokyo. lg. jp/.

Table 2 shows the number of unavailable observations 
and their percentage with respect to the series for each city. 
In these cases, we have computed the arithmetic mean. We 
observe that the highest percentage of missing observations 
corresponds to Moscow (21.29%), though they are rather 
dispersed across the sample, not altering the overall evolu-
tion of the data.

The appendix shows the graphs that allow visualizing 
the behaviour of the concentration of  PM2.5 in each of the 
megacities studied. We can observe the elevated levels and 
variability of some of the megacities, such as Bangkok, 

5606 Environmental Science and Pollution Research (2023) 30:5603–5620

https://aqicn.org/map/world/es/
http://aqmthai.com/web/main.php;
https://www.bjmemc.com.cn
https://www.bjmemc.com.cn
https://in.usembassy.gov/embassy-consulates/new-delhi/air-quality-data/;
https://in.usembassy.gov/embassy-consulates/new-delhi/air-quality-data/;
https://in.usembassy.gov/embassy-consulates/new-delhi/air-quality-data/
https://in.usembassy.gov/embassy-consulates/new-delhi/air-quality-data/
http://www.gdep.gov.cn
https://bd.usembassy.gov/
https://bd.usembassy.gov/
http://www.dpccairdata.com/dpccairdata/display/index.php
http://www.dpccairdata.com/dpccairdata/display/index.php
https://www.bmkg.go.id/
https://www.bmkg.go.id/
https://londonair.org.uk/LondonAir/Default.aspx
https://londonair.org.uk/LondonAir/Default.aspx
http://www.aqmd.gov/
http://www.aqmd.gov/
http://sinaica.inecc.gob.mx/
https://mosecom.mos.ru/
https://mosecom.mos.ru/
https://www.dec.ny.gov/
https://www.dec.ny.gov/
http://soramame.taiki.go.jp/
https://www.airparif.asso.fr/
https://cetesb.sp.gov.br/
https://cetesb.sp.gov.br/
https://www.airkorea.or.kr/web
https://sthj.sh.gov.cn/
http://www.tjemc.org.cn/html/1/index.html
http://www.tjemc.org.cn/html/1/index.html
https://www.kankyo.metro.tokyo.lg.jp/


1 3

Beijing, Bombay, Calcutta, Canton, Dacca, Delhi, Jakarta, 
Seoul, Shanghai, and Tientsin.

Empirical results

We consider in this section the model given by Eqs. (1) and 
(2), testing the null hypothesis

for any real value do. Thus, the model under the null 
becomes

Across the tables, we report the values of do where the 
null hypothesis (3) cannot be rejected at the 95% level along 
with the estimates of d based on a frequency domain ver-
sion of the Whittle function. We display the estimates of d 
under three different scenarios: (i) no deterministic terms, 
i.e. implying that α = β = 0 a priori in (4), (ii) with an inter-
cept or a constant (i.e. with β = 0 a priori), and (iii) with 
both the constant and the linear time trend freely estimated 
from the data.

In Tables 3 and 4, we suppose u(t) is a white noise pro-
cess, while in Tables 5 and 6, weakly autocorrelated errors 
are permitted. We start by reporting the results based on 

(3)Ho ∶ d = do,

(4)
y(t) = � + �t + x(t); (1 − L)dox(t) = u(t). t = 1, 2,⋯

Table 2  Time series data

City State Number of miss-
ing observations

Percentage of 
missing observa-
tions

Bangkok Thailand 2 0.18
Beijing China 0 0.00
Bombay India 100 9.14
Calcutta India 89 8.13
Canton China 0 0.00
Dacca Bangladesh 84 7.67
Delhi India 25 2.28
Jakarta Indonesia 59 5.39
London UK 2 0.18
Los Angeles USA 11 1.00
Mexico Mexico 204 18.64
Moscow Russia 233 21.29
New York USA 30 2.74
Osaka Japan 7 0.63
Paris France 2 0.18
Sao Paulo Brasil 124 11.33
Seoul Korea 2 0.18
Shanghai China 2 0.18
Tientsin China 2 0.18
Tokyo Japan 7 0.63

Table 3  Estimates of the 
differencing parameter. White 
noise errors

The values in bold refer to the selected specification in relation to the deterministic terms. The values in 
parenthesis are the 95% confidence bands of the non-rejection values of d

City No deterministic terms An intercept An intercept with 
a linear time trend

Bangkok 0.81 (0.75, 0.88) 0.79 (0.73, 0.87) 0.79 (0.73, 0.87)
Beijing 0.48 (0.41, 0.56) 0.46 (0.38, 0.54) 0.46 (0.38, 0.54)
Bombay 0.75 (0.70, 0.80) 0.68 (0.63, 0.74) 0.68 (0.63, 0.74)
Calcutta 0.78 (0.73, 0.84) 0.74 (0.69, 0.80) 0.74 (0.69, 0.80)
Canton 0.56 (0.52, 0.62) 0.52 (0.47, 0.59) 0.53 (0.47, 0.59)
Dacca 0.71 (0.66, 0.76) 0.64 (0.60, 0.70) 0.65 (0.60, 0.70)
Delhi 0.64 (0.60, 0.70) 0.62 (0.57, 0.67) 0.62 (0.57, 0.68)
Jakarta 0.56 (0.52, 0.61) 0.54 (0.50, 0.60) 0.55 (0.50, 0.60)
London 0.65 (0.59, 0.72) 0.60 (0.53, 0.69) 0.60 (0.53, 0.69)
Los Angeles 0.66 (0.59, 0.73) 0.68 (0.60, 0.76) 0.68 (0.61, 0.76)
Mexico 0.59 (0.53, 0.65) 0.54 (0.48, 0.61) 0.54 (0.48, 0.61)
Moscow 0.59 (0.53, 0.66) 0.56 (0.49, 0.64) 0.56 (0.49, 0.64)
New York 0.50 (0.45, 0.57) 0.44 (0.39, 0.51) 0.44 (0.39, 0.51)
Osaka 0.59 (0.53, 0.67) 0.55 (0.47, 0.64) 0.55 (0.47, 0.64)
Paris 0.68 (0.61, 0.75) 0.65 (0.57, 0.73) 0.65 (0.57, 0.73)
Sao Paulo 0.58 (0.51, 0.66) 0.55 (0.48, 0.64) 0.55 (0.48, 0.64)
Seoul 0.62 (0.55, 0.71) 0.60 (0.53, 0.70) 0.60 (0.53, 0.70)
Shanghai 0.47 (0.42, 0.53) 0.40 (0.34, 0.47) 0.40 (0.34, 0.47)
Tientsin 0.46 (0.40, 0.54) 0.43 (0.35, 0.52) 0.43 (0.35, 0.52)
Tokyo 0.50 (0.45, 0.56) 0.46 (0.39, 0.53) 0.45 (0.39, 0.53)
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white noise errors. We first notice that the time trend is not 
required in any single case, and the estimated values of d 
are constrained between 0 and 1 in all cases and thus show-
ing fractional integration. However, the values of d sub-
stantially change from one series to another. Thus, there are 
two cities where the estimated values of d are found to be 
significantly below 0.5 and thus showing a stationary pat-
tern. They are Shanghai (d = 0.40) and New York (0.44). 
On the other hand, there are nine cities with d displaying 
non-rejection values below and above 0.5. They are Tientsin 
(0.43), Beijing and Tokyo (0.46), Canton (0.52), Mexico 
(0.54), Osaka and Sao Paulo (0.46), and Moscow (0.56). 
Finally, the remaining ten cities show nonstationary patterns, 
with values of d significantly above 0.50 and ranging from 
Jakarta (d = 0.54) to Bangkok (d = 0.79). Nevertheless, in 
all cases, the estimated values of d for all cities are signifi-
cantly smaller than 1 showing mean reversion and transitory 
shocks, disappearing thus in the long run. Table 3 displays 
the estimated coefficients, the lowest intercept corresponds 
to the case of Tokyo (40.632), and the largest one referring 
to Delhi (332.621).

In Tables 5 and 6, we allow for weak autocorrelation. 
We employ here a Bloomfield exponential spectral model 
(Bloomfield 1973) that accommodates autoregressive (AR) 
structures in a nonparametric way with a lower number of 
parameters, being stationary for all its range of values unlike 
what happens in the AR case.

We observe in Table 5 that the time trend is required now 
in a number of cases (11 out of the 20 cases presented), and 
the time trend coefficient is negative in all these cases, the 
largest value corresponding to Delhi (−0.1163), followed by 
Bombay (−0.0783). This is good news in the sense that it 
indicates a systematic decrease in the number of emissions 
for these cities. The estimates of d are once again smaller 
than 1 but the values are now much lower. Stationary patterns 
(d < 0.50) are observed in 15 out of the 20 observed series, 
ranging the values of d from 0.06 (Tientsin) to 0.45 (Jakarta); 
for Bangkok, Dacca, and Delhi, the estimates of d are around 
0.50, and Bombay and Calcutta display values of d signifi-
cantly higher than 0.50 and thus showing a nonstationary 

Table 4  Estimated coefficients from Table 3

City d (95% confidence 
band)

Intercept (t-value) Time 
trend 
(t-value)

Bangkok 0.79 (0.73, 0.87) 98.971 (6.88) -
Beijing 0.46 (0.38, 0.54) 97.607 (4.76) -
Bombay 0.68 (0.63, 0.74) 205.698 (11.58) -
Calcutta 0.74 (0.69, 0.80) 211.03 (8.29) -
Canton 0.52 (0.47, 0.59) 120.498 (8.08) -
Dacca 0.64 (0.60, 0.70) 213.736 (9.45) -
Delhi 0.62 (0.57, 0.67) 332.621 (9.48) -
Jakarta 0.54 (0.50, 0.60) 64.921 (5.24) -
London 0.60 (0.53, 0.69) 56.731 (5.17) -
Los Angeles 0.68 (0.60, 0.76) 115.581 (9.83) -
Mexico 0.54 (0.48, 0.61) 68.926 (7.43) -
Moscow 0.56 (0.49, 0.64) 42.860 (4.28) -
New York 0.44 (0.39, 0.51) 42.773 (7.96) -
Osaka 0.55 (0.47, 0.64) 64.913 (5.89) -
Paris 0.65 (0.57, 0.73) 43.819 (3.74) -
Sao Paulo 0.55 (0.48, 0.64) 45.506 (3.74) -
Seoul 0.60 (0.53, 0.70) 85.704 (4.25) -
Shanghai 0.40 (0.34, 0.47) 107.875 (9.01) -
Tientsin 0.43 (0.35, 0.52) 111.804 (6.32) -
Tokyo 0.46 (0.39, 0.53) 40.632 (6.15) -

Table 5  Estimates of the differencing parameter. Autocorrelated 
errors

The values in bold refer to the selected specification in relation to the 
deterministic terms. The values in parenthesis are the 95% confidence 
bands of the non-rejection values of d

City No deterministic 
terms

An intercept An intercept with 
a linear time trend

Bangkok 0.59 (0.53, 0.67) 0.51 (0.45, 0.58) 0.51 (0.45, 0.58)
Beijing 0.15 (0.08, 0.25) 0.10 (0.04, 0.16) 0.08 (0.02, 0.15)
Bombay 0.65 (0.60, 0.72) 0.55 (0.51, 0.61) 0.56 (0.51, 0.62)
Calcutta 0.64 (0.60, 0.70) 0.58 (0.54, 0.64) 0.58 (0.54, 0.64)
Canton 0.45 (0.39, 0.51) 0.36 (0.30, 0.43) 0.36 (0.30, 0.42)
Dacca 0.62 (0.57, 0.67) 0.54 (0.50, 0.59) 0.54 (0.50, 0.59)
Delhi 0.55 (0.50, 0.61) 0.50 (0.45, 0.56) 0.51 (0.46, 0.58)
Jakarta 0.48 (0.44, 0.54) 0.45 (0.40, 0.50) 0.45 (0.41, 0.51)
London 0.42 (0.36, 0.47) 0.26 (0.21, 0.32) 0.20 (0.12, 0.28)
Los Angeles 0.33 (0.27, 0.40) 0.27 (0.22, 0.34) 0.28 (0.21, 0.36)
Mexico 0.45 (0.40, 0.52) 0.34 (0.29, 0.42) 0.34 (0.28, 0.42)
Moscow 0.43 (0.36, 0.52) 0.32 (0.23, 0.42) 0.32 (0.22, 0.42)
New York 0.32 (0.28, 0.39) 0.23 (0.18, 0.29) 0.22 (0.17, 0.28)
Osaka 0.34 (0.29, 0.41) 0.16 (0.10, 0.22) 0.11 (0.04, 0.20)
Paris 0.40 (0.35, 0.47) 0.26 (0.20, 0.35) 0.23 (0.15, 0.32)
Sao Paulo 0.30 (0.25, 0.36) 0.23 (0.19, 0.29) 0.23 (0.18, 0.29)
Seoul 0.28 (0.23, 0.33) 0.21 (0.16, 0.26) 0.20 (0.15, 0.25)
Shanghai 0.31 (0.25, 0.37) 0.19 (0.12, 0.23) 0.14 (0.09, 0.21)
Tientsin 0.12 (0.04, 0.21) 0.06 (0.02, 0.12) 0.06 (0.01, 0.12)
Tokyo 0.30 (0.25, 0.36) 0.17 (0.12, 0.22) 0.11 (0.05, 0.18)
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Table 6  Estimated coefficients 
from Table 5

City d (95% confidence band) Intercept (t-value) Time trend (t-value)

Bangkok 0.51 (0.45, 0.58) 99.354 (11.78) -
Beijing 0.08 (0.02, 0.15) 114.400 (29.36) −0.0166 (−2.76)
Bombay 0.56 (0.51, 0.62) 195.057 (13.26) −0.0783 (−1.93)
Calcutta 0.58 (0.54, 0.64) 208.193 (10.74) -
Canton 0.36 (0.30, 0.42) 109.094 (12.04) −0.0280 (−1.90)
Dacca 0.54 (0.50, 0.59) 204.969 (11.60) -
Delhi 0.51 (0.46, 0.58) 295.826 (10.39) −0.1163 (−1.86)
Jakarta 0.45 (0.40, 0.50) 77.061 (9.04) -
London 0.20 (0.12, 0.28) 67.950 (26.81) −0.0228 (−5.90)
Los Angeles 0.27 (0.22, 0.34) 55.837 (23.09) -
Mexico 0.34 (0.29, 0.42) 65.425 (17.14) -
Moscow 0.32 (0.23, 0.42) 50.416 (14.35) -
New York 0.22 (0.17, 0.28) 40.519 (16.83) −0.0076 (−2.03)
Osaka 0.11 (0.04, 0.20) 73.983 (41.38) −0.0152 (−5.50)
Paris 0.23 (0.15, 0.32) 66.340 (23.31) −0.0158 (−3.64)
Sao Paulo 0.23 (0.19, 0.29) 55.035 (22.44) -
Seoul 0.20 (0.15, 0.25) 90.419 (21.19) −0.0191 (−2.95)
Shanghai 0.14 (0.09, 0.21) 109.094 (12.04) −0.0268 (−4.10)
Tientsin 0.06 (0.01, 0.12) 204.969 (11.60) -
Tokyo 0.11 (0.05, 0.18) 50.849 (34.07) −0.0153 (−6.68)

Table 7  Summary results on persistence

White noise Autocorrelation

Shanghai 0.40 (0.34, 0.47) Tientsin 0.06 (0.01, 0.12)
Tientsin 0.43 (0.35, 0.52) Beijing 0.08 (0.02, 0.15)
New York 0.44 (0.39, 0.51) Tokyo 0.11 (0.04, 0.20)
Beijing 0.46 (0.38, 0.54) Osaka 0.11 (0.05, 0.18)
Tokyo 0.46 (0.39, 0.53) Shanghai 0.14 (0.09, 0.21)
Canton 0.52 (0.47, 0.59) London 0.20 (0.12, 0.28)
Mexico 0.54 (0.48, 0.61) Seoul 0.20 (0.15, 0.25)
Jakarta 0.54 (0.50, 0.60) New York 0.22 (0.17, 0.28)
Osaka 0.55 (0.47, 0.64) Paris 0.23 (0.15, 0.32)
Sao Paulo 0.55 (0.48, 0.64) Sao Paulo 0.23 (0.19, 0.29)
Moscow 0.56 (0.49, 0.64) Los Angeles 0.27 (0.22, 0.34)
London 0.60 (0.53, 0.69) Moscow 0.32 (0.23, 0.42)
Seoul 0.60 (0.53, 0.70) Mexico 0.34 (0.29, 0.42)
Delhi 0.62 (0.57, 0.67) Canton 0.36 (0.30, 0.42)
Dacca 0.64 (0.60, 0.70) Jakarta 0.45 (0.40, 0.50)
Paris 0.65 (0.57, 0.73) Delhi 0.51 (0.46, 0.58)
Los Angeles 0.68 (0.60, 0.76) Bangkok 0.51 (0.45, 0.58)
Bombay 0.68 (0.63, 0.74) Dacca 0.54 (0.30, 0.59)
Calcutta 0.74 (0.69, 0.80) Bombay 0.56 (0.51, 0.62)
Bangkok 0.79 (0.73, 0.87) Calcutta 0.58 (0.54, 0.64)

Table 8  Summary results on time trends

City d = 0 d estimated

Bangkok −0.0184 (−11.12) -
Beijing −0.0172 (−3.60) −0.0166 (−2.76)
Bombay −0.0578 (−19.77) −0.0783 (−1.93)
Calcutta −0.0560 (−14.48) -
Canton −0.0198 (−7.96) −0.0280 (−1.90)
Dacca −0.0413 (−10.96) -
Delhi −0.0515 (−9.69) −0.1163 (−1.86)
Jakarta - -
London −0.0252 (−17.72) −0.0228 (−5.90)
Los Angeles - -
Mexico −0.0166 (−8.37) -
Moscow −0.0080 (−3.86) -
New York −0.0064 (−5.11) −0.0076 (−2.03)
Osaka −0.0155 (−9.84) −0.0152 (−5.50)
Paris −0.0187 (−13.74) −0.0158 (−3.64)
Sao Paulo −0.0096 (−4.57) -
Seoul −0.0203 (−8.18) −0.0191 (−2.95)
Shanghai −0.0264 (−8.22) −0.0268 (−4.10)
Tientsin −0.0085 (−2.18) -
Tokyo −0.0163 (−11.71) −0.0153 (−6.30)
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pattern. Nevertheless, in all cases, the estimated values of 
d are once again more statistically significantly below 1 
and thus displaying mean reversion and implying transitory 
shocks. Thus, in the event of a negative exogenous shock 
generating an increase in the emissions in the cities, there 
is no need for strong actions since the series will return by 
themselves in the long run to the original long-term projec-
tion. On the other hand, if the shock is positive, reducing 
substantially the number of emissions, actions should be 
conducted to maintain the emissions at these lower levels.

Table 7 summarizes the results in terms of the degree of 
persistence measured by the fractional differencing param-
eter, d. The left column refers to the case of white noise 
errors, while the right-hand column refers to autocorrela-
tion. If we look at the first five positions (referring to the 
lowest degrees of persistence), we observe that there are 
three cities appearing in both scenarios: Shanghai (1st posi-
tion with white noise errors and 5th under autocorrelation), 
Tientsin (2nd and 1st respectively) and Tokyo (5th and 3rd). 
On the other hand, focusing on the bottom places with the 
highest levels of persistence, three cities share the last 4 
places: Bangkok (20th and 17th), Calcutta (19th and 20th), 
and Bombay (18th and 19th). The lowest values observed 
under the assumption of autocorrelation can be explained 
by the competition between the two structures (fractional 
differentiation and Bloomfield autocorrelation) in describing 
the time dependence. Note that under the white noise struc-
ture, all the time dependence is exclusively captured by the 
order of integration d, while in the autocorrelation case, the 
degree of integration competes with the Bloomfield structure 
in capturing that time lag relationship.

It is also interesting to see at the time trend coefficients, 
which are significantly negative in a number of cases under 
the hypothesis of autocorrelated errors: Delhi (−0.116), 
Bombay (−0.0783), Canton (−0.0280), London (−0.0228), 
Shanghai (−0.0226), Seoul (−0.0191), Beijing (−0.0166), 
Paris (−0.0158), Tokyo (−0.0153), Osaka (−0.0152), and 
New York (-0.0076). For the rest of the cities (Bangkok, 
Calcutta, Dacca, Jakarta, Los Angeles, Mexico, Moscow, 
Sao Paulo, and Tientsin), the time trend coefficient is found 
to be statistically insignificantly different from zero.

In Table 8, we compare the time trend coefficients under 
the (wrong) assumption of I(0) errors, i.e. imposing a priori 
that d = 0, (2nd column) with those obtained with d esti-
mated from the data (3rd column). We observe that for seven 
cities, namely, Bangkok, Calcutta, Dacca, Mexico, Moscow, 

Sao Paulo, and Tientsin, the time trend coefficient is signifi-
cant when d = 0 but insignificant when d is correctly esti-
mated. For a couple of cities, Jakarta and Los Angeles, the 
coefficient is insignificant in the two scenarios, and for the 
remaining eleven cases, there is a reduction in the magnitude 
of β in six cities (Beijing, London, Osaka, Paris, Seoul, and 
Tokyo) and an increase in another five (Bombay, Canton, 
Delhi, New York, and Shanghai). Thus, erroneous conclu-
sions can be obtained under the imposition of short memory 
or I(0) structures on the error term.

Conclusions

In this paper, we have looked at the statistical properties of 
 PM2.5 in 20 megacities around the world. Using daily data 
from January 1, 2018, to December 31, 2020, and based on 
fractional integration, our results show that the estimated 
values for the differencing parameter are constrained in the 
interval (0, 1) in all cases, thus showing a mean reverting 
pattern and thus implying transitory effects of shocks. This 
result holds independently of the way of modelling the I(0) 
error term either with uncorrelation or with autocorrelated 
errors, though lower degrees of integration are shown under 
this latter assumption. More importantly, the fact that the 
differencing parameter is significatively different from zero 
has some important consequences on the estimation of the 
time trend coefficient that measures the decrease in the emis-
sions per unit. In fact, some megacities that were supposed 
to display significant negative time trends under the I(0) 
specification are found to show insignificant coefficients 
with the long-memory approach. This is one important 
lesson obtained in this work. Thus, when examining time 
trends in environmental series the potential presence of long 
memory is an issue that should be taken into account.

Finally, this work can be extended in several directions. 
First, the same type of analysis can be extended to other 
regions of the world in order to verify if the long-memory 
property holds across regions and to check the decrease in 
the values across time. Second, other long-memory models, 
based on parametric, semiparametric, or even nonparametric 
methods can be implemented to verify the results reported in 
this work. Finally, the possibility of nonlinear structures or 
structural changes still in the context of fractional integration 
in the analysis of environmental data is another line of future 
research that is currently in progress.
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Appendix

Time series plots of  PM2.5 measurements between 2018 and 
2020 for the 20 megacities
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The abscissa axis shows the monthly average from 2018 
to 2020, and the ordinate axis shows the measurements of 
 PM2.5 microparticles measured in micrograms per cubic 
meter of air (μg/m3).
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